
A practical approach to building neural network models
using PyTorch

Deep Learning
with PyTorch

Foreword by:
Manas Agarwal
CEO, Co-Founder of Affi ne Analytics, Bengaluru, India

Vishnu Subramanian

Deep Learning with PyTorch

Vishnu Subramanian

BIRMINGHAM - MUMBAI

Deep Learning with PyTorch
Copyright 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Veena Pagare
Acquisition Editor: Aman Singh
Content Development Editor: Snehal Kolte
Technical Editor: Sayli Nikalje
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Tania Dutta
Production Coordinator: Deepika Naik

First published: February 2018

Production reference: 1210218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-433-6

To Jeremy Howard and Rachel Thomas for inspiring me to write this book,
and to my family for their love.

 Vishnu Subramanian

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Foreword
I have been working with Vishnu Subramanian for the last few years. Vishnu comes across
as a passionate techno-analytical expert who has the rigor one requires to achieve
excellence. His points of view on big data/machine learning/AI are well informed and carry
his own analysis and appreciation of the landscape of problems and solutions. Having
known him closely, I'm glad to be writing this foreword in my capacity as the CEO of
Affine.

Increased success through deep learning solutions for our Fortune 500 clients clearly
necessitates quick prototyping. PyTorch (a year-old deep learning framework) allows rapid
prototyping for analytical projects without worrying too much about the complexity of the
framework. This leads to an augmentation of the best of human capabilities with
frameworks that can help deliver solutions faster. As an entrepreneur delivering advanced
analytical solutions, building this capability in my teams happens to be the primary
objective for me. In this book, Vishnu takes you through the fundamentals of building deep
learning solutions using PyTorch while helping you build a mindset geared towards
modern deep learning techniques.

The first half of the book introduces several fundamental building blocks of deep learning
and PyTorch. It also covers key concepts such as overfitting, underfitting, and techniques
that helps us deal with them.

In the second half of the book, Vishnu covers advanced concepts such as CNN, RNN, and
LSTM transfer learning using pre-convoluted features, and one-dimensional convolutions,
along with real-world examples of how these techniques can be applied. The last two
chapters introduce you to modern deep learning architectures such as Inception, ResNet,
DenseNet model and ensembling, and generative networks such as style transfer, GAN,
and language modeling.

With all the practical examples covered and with solid explanations, this is one of the best
books for readers who want to become proficient in deep learning. The rate at which
technology evolves is unparalleled today. To a reader looking forward towards developing
mature deep learning solutions, I would like to point that the right framework also drives
the right mindset.

To all those reading through this book, happy exploring new horizons!

Wishing Vishnu and this book a roaring success, which they both deserve.

Manas Agarwal

CEO, Co-Founder of Affine Analytics,

Bengaluru, India

Contributors

About the author
Vishnu Subramanian has experience in leading, architecting, and implementing several big
data analytical projects (artificial intelligence, machine learning, and deep learning). He
specializes in machine learning, deep learning, distributed machine learning, and
visualization. He has experience in retail, finance, and travel. He is good at understanding
and coordinating between businesses, AI, and engineering teams.

This book would not have been possible without the inspiration and MOOC by Jeremy
Howard and Rachel Thomas of fast.ai. Thanks to them for the important role they are
playing in democratizing AI/deep learning.

About the reviewer
Poonam Ligade is a freelancer who specializes in big data tools such as Spark, Flink, and
Cassandra, as well as scalable machine learning and deep learning. She is also a top kaggle
kernel writer.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Table of Contents
Preface 1

Chapter 1: Getting Started with Deep Learning Using PyTorch 6
Artificial intelligence 7

The history of AI 7
Machine learning 8

Examples of machine learning in real life 9
Deep learning 9

Applications of deep learning 10
Hype associated with deep learning 12
The history of deep learning 13
Why now? 13
Hardware availability 13
Data and algorithms 15
Deep learning frameworks 15

PyTorch 16
Summary 17

Chapter 2: Building Blocks of Neural Networks 18
Installing PyTorch 18
Our first neural network 19

Data preparation 20
Scalar (0-D tensors) 21
Vectors (1-D tensors) 21
Matrix (2-D tensors) 21
3-D tensors 22
Slicing tensors 23
4-D tensors 26
5-D tensors 26
Tensors on GPU 27
Variables 28

Creating data for our neural network 30
Creating learnable parameters 30

Table of Contents

[ii]

Neural network model 31
Network implementation 32
Loss function 33
Optimize the neural network 33

Loading data 34
Dataset class 34
DataLoader class 35

Summary 36

Chapter 3: Diving Deep into Neural Networks 37
Deep dive into the building blocks of neural networks 37

Layers – fundamental blocks of neural networks 39
Non-linear activations 41

Sigmoid 41
Tanh 43
ReLU 43
Leaky ReLU 45

PyTorch non-linear activations 45
The PyTorch way of building deep learning algorithms 46
Model architecture for different machine learning problems 46
Loss functions 47
Optimizing network architecture 49

Image classification using deep learning 50
Loading data into PyTorch tensors 54
Loading PyTorch tensors as batches 55
Building the network architecture 56
Training the model 58

Summary 62

Chapter 4: Fundamentals of Machine Learning 63
Three kinds of machine learning problems 63

Supervised learning 64
Unsupervised learning 64
Reinforcement learning 65

Machine learning glossary 65
Evaluating machine learning models 66

Training, validation, and test split 67
Simple holdout validation 68

Table of Contents

[iii]

K-fold validation 69
K-fold validation with shuffling 69

Data representativeness 70
Time sensitivity 70
Data redundancy 70

Data preprocessing and feature engineering 71
Vectorization 71
Value normalization 71
Handling missing values 72
Feature engineering 72

Overfitting and underfitting 73
Getting more data 74
Reducing the size of the network 74
Applying weight regularization 75
Dropout 76
Underfitting 78

Workflow of a machine learning project 78
Problem definition and dataset creation 78
Measure of success 79
Evaluation protocol 80
Prepare your data 80
Baseline model 80
Large model enough to overfit 81
Applying regularization 82
Learning rate picking strategies 83

Summary 84

Chapter 5: Deep Learning for Computer Vision 85
Introduction to neural networks 86

MNIST – getting data 87
Building a CNN model from scratch 89

Conv2d 91
Pooling 95
Nonlinear activation – ReLU 97
View 97

Linear layer 99
Training the model 99

Table of Contents

[iv]

Classifying dogs and cats – CNN from scratch 102
Classifying dogs and cats using transfer learning 104

Creating and exploring a VGG16 model 106
Freezing the layers 108
Fine-tuning VGG16 108
Training the VGG16 model 108

Calculating pre-convoluted features 111
Understanding what a CNN model learns 114

Visualizing outputs from intermediate layers 114
Visualizing weights of the CNN layer 119
Summary 119

Chapter 6: Deep Learning with Sequence Data and Text 120
Working with text data 121

Tokenization 122
Converting text into characters 122
Converting text into words 123
N-gram representation 124

Vectorization 125
One-hot encoding 125
Word embedding 128

Training word embedding by building a sentiment classifier 129
Downloading IMDB data and performing text tokenization 130

torchtext.data 130
torchtext.datasets 131

Building vocabulary 132
Generate batches of vectors 133
Creating a network model with embedding 134
Training the model 135

Using pretrained word embeddings 137
Downloading the embeddings 137
Loading the embeddings in the model 138
Freeze the embedding layer weights 139

Recursive neural networks 140
Understanding how RNN works with an example 141

LSTM 144

Table of Contents

[v]

Long-term dependency 144
LSTM networks 144

Preparing the data 147
Creating batches 147
Creating the network 148
Training the model 149

Convolutional network on sequence data 150
Understanding one-dimensional convolution for sequence data 151

Creating the network 151
Training the model 152

Summary 153

Chapter 7: Generative Networks 154
Neural style transfer 155

Loading the data 157
Creating the VGG model 159
Content loss 160
Style loss 160
Extracting the losses 163
Creating loss function for each layers 166
Creating the optimizer 166
Training 167

Generative adversarial networks 168
Deep convolutional GAN 170

Defining the generator network 170
Transposed convolutions 171
Batch normalization 171
Generator 173

Defining the discriminator network 175
Defining loss and optimizer 176
Training the discriminator 177

Training the discriminator with real images 177
Training the discriminator with fake images 177

Training the generator network 178
Training the complete network 178
Inspecting the generated images 180

Language modeling 181

Table of Contents

[vi]

Preparing the data 182
Generating the batches 184

Batches 184
Backpropagation through time 185

Defining a model based on LSTM 185
Defining the train and evaluate functions 187
Training the model 190

Summary 192

Chapter 8: Modern Network Architectures 193
Modern network architectures 193

ResNet 194
Creating PyTorch datasets 197
Creating loaders for training and validation 198
Creating a ResNet model 198
Extracting convolutional features 199
Creating a custom PyTorch dataset class for the pre-convoluted features and
loader 200
Creating a simple linear model 200
Training and validating the model 201

Inception 202
Creating an Inception model 206
Extracting convolutional features using register_forward_hook 206
Creating a new dataset for the convoluted features 207
Creating a fully connected model 208
Training and validating the model 208

Densely connected convolutional networks – DenseNet 209
DenseBlock 210
DenseLayer 211

Creating a DenseNet model 212
Extracting DenseNet features 213
Creating a dataset and loaders 213
Creating a fully connected model and train 214

Model ensembling 215
Creating models 217
Extracting the image features 217
Creating a custom dataset along with data loaders 219
Creating an ensembling model 220

Table of Contents

[vii]

Training and validating the model 220
Encoder-decoder architecture 222

Encoder 224
Decoder 224

Summary 224

Chapter 9: What Next? 225
What next? 225
Overview 225
Interesting ideas to explore 226

Object detection 227
Image segmentation 228
OpenNMT in PyTorch 229
Alien NLP 229
fast.ai – making neural nets uncool again 229
Open Neural Network Exchange 230

How to keep yourself updated 230
Summary 230

Other Books You May Enjoy 231

Index 234

Preface
PyTorch is grabbing the attention of data science professionals and deep
learning practitioners due to its flexibility and ease of use. This book introduces the
fundamental building blocks of deep learning and PyTorch. It demonstrates how to solve
real-world problems using a practical approach. You will also learn some of the modern
architectures and techniques that are used to crack some cutting-edge research problems.

This book provides the intuition behind various state-of-the-art deep learning architectures,
such as ResNet, DenseNet, Inception, and Seq2Seq, without diving deep into the math. It
also shows how to do transfer learning, how to speed up transfer learning using pre-
computed features, and how to do text classification using embeddings, pretrained
embeddings, LSTM, and one-dimensional convolutions.

By the end of the book, you will be a proficient deep learning practitioner who will be able
to solve some business problems using the different techniques learned here.

Who this book is for
This book is for engineers, data analysts, and data scientists, interested in deep learning,
and those looking to explore and implement advanced algorithms with PyTorch.
Knowledge of machine learning is helpful but not mandatory. Knowledge of Python
programming is expected.

What this book covers
, Getting Started with Deep Learning Using PyTorch, goes over the history of

artificial intelligence (AI) and machine learning and looks at the recent growth of deep
learning. We will also cover how various improvements in hardware and algorithms
triggered huge success in the implementation of deep learning across different applications.
Finally, we will introduce the beautiful PyTorch Python library, built on top of Torch by
Facebook.

, Building Blocks of Neural Networks, discusses the knowledge of various building
blocks of PyTorch, such as variables, tensors, and , and how they are used to
develop neural networks.

Preface

[2]

, Diving Deep into Neural Networks, covers the different processes involved in
training a neural network, such as the data preparation, data loaders for batching tensors,
the package for creating network architectures and the use of PyTorch loss
functions and optimizers.

, Fundamentals of Machine Learning, covers different types of machine learning
problems, along with challenges such as overfitting and underfitting. We also cover
different techniques such as data augmentation, adding dropouts, and using batch
normalization to prevent overfitting.

, Deep Learning for Computer Vision, explains the building blocks of Convolutional
Neural Networks (CNNs), such as one-dimensional and two-dimensional convolutions,
max pooling, average pooling, basic CNN architectures, transfer learning, and using pre-
convoluted features to train faster.

, Deep Learning with Sequence Data and Text, covers word embeddings, how to use
pretrained embeddings, RNN, LSTM, and one-dimensional convolutions for text
classification on the dataset.

, Generative Networks, explains how to use deep learning to generate artistic
images, new images with DCGAN, and text using language modeling.

, Modern Network Architectures, explores architectures such as ResNet, Inception,
and DenseNet that power modern computer vision applications. We will have a quick
introduction to encoder-decoder architectures that power modern systems such as language
translations and image captioning.

, What Next?, looks into the summarizes what we have learned and looks at
keeping yourself updated in the field of deep learning.

To get the most out of this book
All the chapters (except , Getting Started with Deep Learning Using PyTorch and

, What Next) have associated Jupyter Notebooks in the book's GitHub repository.
The imports required for the code to run may not be included in the text to save space. You
should be able to run all of the code from the Notebooks.

Preface

[3]

The book focuses on practical illustrations, so run the Jupyter Notebooks as you read the
chapters.

Access to a computer with a GPU will help run the code quickly. There are companies such
as and that abstract a lot of the complexity required to
run deep learning algorithms.

Download the example code files
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
 and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at .1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
. In case there's an update to the code, it

will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:

Preface

[4]

Conventions used
There are a number of text conventions used throughout this book.

: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The custom class has to implement two main functions,
namely and ."

A block of code is set as follows:

Any command-line input or output is written as follows:

conda install pytorch torchvision cuda80 -c soumith

Bold: Indicates a new term, an important word, or words that you see onscreen.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at .

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit , selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit .

11
Getting Started with Deep

Learning Using PyTorch
Deep learning (DL) has revolutionized industry after industry. It was once famously
described by Andrew Ng on Twitter:

Artificial Intelligence is the new electricity!

Electricity transformed countless industries; artificial intelligence (AI) will now do the
same.

AI and DL are used like synonyms, but there are substantial differences between the two.
Let's demystify the terminology used in the industry so that you, as a practitioner, will be
able to differentiate between signal and noise.

In this chapter, we will cover the following different parts of AI:

AI itself and its origination
Machine learning in the real world
Applications of deep learning
Why deep learning now?
Deep learning framework: PyTorch

Getting Started with Deep Learning Using PyTorch Chapter 1

[7]

Artificial intelligence
Countless articles discussing AI are published every day. The trend has increased in the last
two years. There are several definitions of AI floating around the web, my favorite being the
automation of intellectual tasks normally performed by humans.

The history of AI
The term artificial intelligence was first coined by John McCarthy in 1956, when he held the
first academic conference on the subject. The journey of the question of whether machines
think or not started much earlier than that. In the early days of AI, machines were able to
solve problems that were difficult for humans to solve.

For example, the Enigma machine was built at the end of World War II to be used in
military communications. Alan Turing built an AI system that helped to crack the Enigma
code. Cracking the Enigma code was a very challenging task for a human, and it could take
weeks for an analyst to do. The AI machine was able to crack the code in hours.

Computers have a tough time solving problems that are intuitive to us, such as
differentiating between dogs and cats, telling whether your friend is angry at you for
arriving late at a party (emotions), differentiating between a truck and a car, taking notes
during a seminar (speech recognition), or converting notes to another language for your
friend who does not understand your language (for example, French to English). Most of
these tasks are intuitive to us, but we were unable to program or hard code a computer to
do these kinds of tasks. Most of the intelligence in early AI machines was hard coded, such
as a computer program playing chess.

In the early years of AI, a lot of researchers believed that AI could be achieved by hard
coding rules. This kind of AI is called symbolic AI and was useful in solving well-defined,
logical problems, but it was almost incapable of solving complex problems such as image
recognition, object detection, object segmentation, language translation, and natural-
language-understanding tasks. Newer approaches to AI, such as machine learning and DL,
were developed to solve these kinds of problems.

To better understand the relationships among AI, ML, and DL, let's visualize them as
concentric circles with AI the idea that came first (the largest), then machine
learning (which blossomed later), and finally DL which is driving today s AI explosion
(fitting inside both):

Getting Started with Deep Learning Using PyTorch Chapter 1

[8]

Machine learning
Machine learning (ML) is a sub-field of AI and has become popular in the last 10 years and,
at times, the two are used interchangeably. AI has a lot of other sub-fields aside from
machine learning. ML systems are built by showing lots of examples, unlike symbolic AI,
where we hard code rules to build the system. At a high level, machine learning systems
look at tons of data and come up with rules to predict outcomes for unseen data:

Getting Started with Deep Learning Using PyTorch Chapter 1

[9]

Most ML algorithms perform well on structured data, such as sales predictions,
recommendation systems, and marketing personalization. An important factor for any ML
algorithm is feature engineering and data scientists need to spend a lot of time to get the
features right for ML algorithms to perform. In certain domains, such as computer vision
and natural language processing (NLP), feature engineering is challenging as they suffer
from high dimensionality.

Until recently, problems like this were challenging for organizations to solve using typical
machine-learning techniques, such as linear regression, random forest, and so on, for
reasons such as feature engineering and high dimensionality. Consider an image of size 224
x 224 x 3 (height x width x channels), where 3 in the image size represents values of red,
green, and blue color channels in a color image. To store this image in computer memory,
our matrix will contain 150,528 dimensions for a single image. Assume you want to build a
classifier on top of 1,000 images of size 224 x 224 x 3, the dimensions will become 1,000
times 150,528. A special branch of machine learning called deep learning allows you to
handle these problems using modern techniques and hardware.

Examples of machine learning in real life
The following are some cool products that are powered by machine learning:

Example 1: Google Photos uses a specific form of machine learning called deep
learning for grouping photos
Example 2: Recommendation systems, which are a family of ML algorithms, are
used for recommending movies, music, and products by major companies such
as Netflix, Amazon, and iTunes

Deep learning
Traditional ML algorithms use handwritten feature extraction to train algorithms, while DL
algorithms use modern techniques to extract these features in an automatic fashion.

Getting Started with Deep Learning Using PyTorch Chapter 1

[10]

For example, a DL algorithm predicting whether an image contains a face or not extracts
features such as the first layer detecting edges, the second layer detecting shapes such as
noses and eyes, and the final layer detecting face shapes or more complex structures. Each
layer trains based on the previous layer's representation of the data. It's OK if you find this
explanation hard to understand, the later chapters of the book will help you to intuitively
build and inspect such networks:

The use of DL has grown tremendously in the last few years with the rise of GPUs, big data,
cloud providers such as Amazon Web Services (AWS) and Google Cloud, and frameworks
such as Torch, TensorFlow, Caffe, and PyTorch. In addition to this, large companies share
algorithms trained on huge datasets, thus helping startups to build state-of-the-art systems
on several use cases with little effort.

Applications of deep learning
Some popular applications that were made possible using DL are as follows:

Near-human-level image classification
Near-human-level speech recognition
Machine translation
Autonomous cars
Siri, Google Voice, and Alexa have become more accurate in recent years
A Japanese farmer sorting cucumbers
Lung cancer detection
Language translation beating human-level accuracy

Getting Started with Deep Learning Using PyTorch Chapter 1

[11]

The following screenshot shows a short example of summarization, where the computer
takes a large paragraph of text and summarizes it in a few lines:

In the following image, a computer has been given a plain image without being told what it
shows and, using object detection and some help from a dictionary, you get back an image
caption stating two young girls are playing with lego toy. Isn't it brilliant?

Getting Started with Deep Learning Using PyTorch Chapter 1

[12]

Hype associated with deep learning
People in the media and those outside the field of AI, or people who are not real
practitioners of AI and DL, have been suggesting that things like the story line of the
film Terminator 2: Judgement Day could become reality as AI/DL advances. Some of them
even talk about a time in which we will become controlled by robots, where robots decide
what is good for humanity. At present, the ability of AI is exaggerated far beyond its true
capabilities. Currently, most DL systems are deployed in a very controlled environment and
are given a limited decision boundary.

My guess is that when these systems can learn to make intelligent decisions, rather than
merely completing pattern matching and, when hundreds or thousands of DL algorithms
can work together, then maybe we can expect to see robots that could probably behave like
the ones we see in science fiction movies. In reality, we are no closer to general artificial
intelligence, where machines can do anything without being told to do so. The current state
of DL is more about finding patterns from existing data to predict future outcomes. As DL
practitioners, we need to differentiate between signal and noise.

Getting Started with Deep Learning Using PyTorch Chapter 1

[13]

The history of deep learning
Though deep learning has become popular in recent years, the theory behind deep learning
has been evolving since the 1950s. The following table shows some of the most popular
techniques used today in DL applications and their approximate timeline:

Techniques Year

Neural networks 1943

Backpropogation Early 1960s

Convolution Neural Networks 1979

Recurrent neural networks 1980

Long Short-Term Memory 1997

Deep learning has been given several names over the years. It was called cybernetics in the
1970s, connectionism in the 1980s, and now it is either known as deep learning or neural
networks. We will use DL and neural networks interchangeably. Neural networks are
often referred to as an algorithms inspired by the working of human brains. However, as
practitioners of DL, we need to understand that it is majorly inspired and backed by strong
theories in math (linear algebra and calculus), statistics (probability), and software
engineering.

Why now?
Why has DL became so popular now? Some of the crucial reasons are as follows:

Hardware availability
Data and algorithms
Deep learning frameworks

Hardware availability
Deep learning requires complex mathematical operations to be performed on millions,
sometimes billions, of parameters. Existing CPUs take a long time to perform these kinds of
operations, although this has improved over the last several years. A new kind of hardware
called a graphics processing unit (GPU) has completed these huge mathematical
operations, such as matrix multiplications, orders of magnitude faster.

Getting Started with Deep Learning Using PyTorch Chapter 1

[14]

GPUs were initially built for the gaming industry by companies such as Nvidia and AMD.
It turned out that this hardware is extremely efficient, not only for rendering high quality
video games, but also to speed up the DL algorithms. One recent GPU from Nvidia, the
1080ti, takes a few days to build an image-classification system on top of an
dataset, which previously could have taken around a month.

If you are planning to buy hardware for running deep learning, I would recommend
choosing a GPU from Nvidia based on your budget. Choose one with a good amount of
memory. Remember, your computer memory and GPU memory are two different things.
The 1080ti comes with 11 GB of memory and it costs around $700.

You can also use various cloud providers such as AWS, Google Cloud, or Floyd (this
company offers GPU machines optimized for DL). Using a cloud provider is economical if
you are just starting with DL or if you are setting up machines for organization usage where
you may have more financial freedom.

Performance could vary if these systems are optimized.

The following image shows some of the benchmarks that compare performance between
CPUs and GPUs :

Getting Started with Deep Learning Using PyTorch Chapter 1

[15]

Data and algorithms
Data is the most important ingredient for the success of deep learning. Due to the wide
adoption of the internet and the growing use of smartphones, several companies, such as
Facebook and Google, have been able to collect a lot of data in various formats, particularly
text, images, videos, and audio. In the field of computer vision, ImageNet competitions
have played a huge role in providing datasets of 1.4 million images in 1,000 categories.

These categories are hand-annotated and every year hundreds of teams compete. Some of
the algorithms that were successful in the competition are VGG, ResNet, Inception,
DenseNet, and many more. These algorithms are used today in industries to solve various
computer vision problems. Some of the other popular datasets that are often used in the
deep learning space to benchmark various algorithms are as follows:

MNIST
COCO dataset
CIFAR
The Street View House Numbers
PASCAL VOC
Wikipedia dump
20 Newsgroups
Penn Treebank
Kaggle

The growth of different algorithms such as batch normalization, activation functions, skip
connections, Long Short-Term Memory (LSTM), dropouts, and many more have made it
possible in recent years to train very deep networks faster and more successfully. In the
coming chapters of this book, we will get into the details of each technique and how they
help in building better models.

Deep learning frameworks
In the earlier days, people needed to have expertise in C++ and CUDA to implement DL
algorithms. With a lot of organizations now open sourcing their deep learning frameworks,
people with knowledge of a scripting language, such as Python, can start building and
using DL algorithms. Some of the popular deep learning frameworks used today in the
industry are TensorFlow, Caffe2, Keras, Theano, PyTorch, Chainer, DyNet, MXNet, and
CNTK.

Getting Started with Deep Learning Using PyTorch Chapter 1

[16]

The adoption of deep learning would not have been this huge if it had not been for these
frameworks. They abstract away a lot of underlying complications and allow us to focus on
the applications. We are still in the early days of DL where, with a lot of research,
breakthroughs are happening every day across companies and organizations. As a result of
this, various frameworks have their own pros and cons.

PyTorch
PyTorch, and most of the other deep learning frameworks, can be used for two different
things:

Replacing NumPy-like operations with GPU-accelerated operations
Building deep neural networks

What makes PyTorch increasingly popular is its ease of use and simplicity. Unlike most
other popular deep learning frameworks, which use static computation graphs, PyTorch
uses dynamic computation, which allows greater flexibility in building complex
architectures.

PyTorch extensively uses Python concepts, such as classes, structures, and conditional
loops, allowing us to build DL algorithms in a pure object-oriented fashion. Most of the
other popular frameworks bring their own programming style, sometimes making it
complex to write new algorithms and it does not support intuitive debugging. In the later
chapters, we will discuss computation graphs in detail.

Though PyTorch was released recently and is still in its beta version, it has become
immensely popular among data scientists and deep learning researchers for its ease of use,
better performance, easier-to-debug nature, and strong growing support from various
companies such as SalesForce.

As PyTorch was primarily built for research, it is not recommended for production usage in
certain scenarios where latency requirements are very high. However, this is changing with
a new project called Open Neural Network Exchange (ONNX) (), which
focuses on deploying a model developed on PyTorch to a platform like Caffe2 that is
production-ready. At the time of writing, it is too early to say much about this project as it
has only just been launched. The project is backed by Facebook and Microsoft.

Throughout the rest of the book, we will learn about the various Lego blocks (smaller
concepts or techniques) for building powerful DL applications in the areas of computer
vision and NLP.

Getting Started with Deep Learning Using PyTorch Chapter 1

[17]

Summary
In this introductory chapter, we explored what artificial intelligence, machine learning, and
deep learning are and we discussed the differences between all the three. We also looked at
applications powered by them in our day-to-day lives. We dig deeper into why DL is only
now becoming more popular. Finally, we gave a gentle introduction to PyTorch, which is a
deep learning framework.

 In the next chapter, we will train our first neural network in PyTorch.

22
Building Blocks of Neural

Networks
Understanding the basic building blocks of a neural network, such as tensors, tensor
operations, and gradient descents, is important for building complex neural networks. In
this chapter, we will build our first program in neural networks by covering
the following topics:

Installing PyTorch
Implementing our first neural network
Splitting the neural network into functional blocks
Walking through each fundamental block covering tensors, variables, autograds,
gradients, and optimizers
Loading data using PyTorch

Installing PyTorch
PyTorch is available as a Python package and you can either use , or , to build it
or you can build it from source. The recommended approach for this book is to use the
Anaconda Python 3 distribution. To install Anaconda, please refer to the Anaconda official
documentation at . All the
examples will be available as Jupyter Notebooks in the book's GitHub repository. I would
strongly recommend you use Jupyter Notebook, since it allows you to experiment
interactively. If you already have Anaconda Python installed, then you can proceed with
the following steps for PyTorch installation.

Building Blocks of Neural Networks Chapter 2

[19]

For GPU-based installation with Cuda 8:

conda install pytorch torchvision cuda80 -c soumith

For GPU-based installation with Cuda 7.5:

conda install pytorch torchvision -c soumith

For non-GPU-based installation:

conda install pytorch torchvision -c soumith

At the time of writing, PyTorch does not work on a Windows machine, so you can try a
virtual machine (VM) or Docker image.

Our first neural network
We present our first neural network, which learns how to map training examples (input
array) to targets (output array). Let's assume that we work for one of the largest online
companies, Wondermovies, which serves videos on demand. Our training dataset contains
a feature that represents the average hours spent by users watching movies on the platform
and we would like to predict how much time each user would spend on the platform in the
coming week. It's just an imaginary use case, don't think too much about it. Some of the
high-level activities for building such a solution are as follows:

Data preparation: The function prepares the tensors (arrays)
containing input and output data
Creating learnable parameters: The function provides us with
tensors containing random values that we will optimize to solve our problem
Network model: The function produces the output for the
input data, applying a linear rule, multiplying weights with input data, and
adding the bias term (y = Wx+b)
Loss: The function provides information about how good the model is
Optimizer: The function helps us in adjusting random weights created
initially to help the model calculate target values more accurately

Building Blocks of Neural Networks Chapter 2

[20]

If you are new to machine learning, do not worry, as we will understand exactly what each
function does by the end of the chapter. The following functions abstract away PyTorch
code to make it easier for us to understand. We will dive deep into each of these
functionalities in detail. The aforementioned high level activities are common for most
machine learning and deep learning problems. Later chapters in the book discuss
techniques that can be used to improve each function to build useful applications.

Lets consider following linear regression equation for our neural network:

Let's write our first neural network in PyTorch:

By the end of this chapter, you will have an idea of what is happening inside each function.

Data preparation
PyTorch provides two kinds of data abstractions called and . Tensors
are similar to arrays and they can also be used on GPUs, which provide increased
performance. They provide easy methods of switching between GPUs and CPUs. For
certain operations, we can notice a boost in performance and machine learning algorithms
can understand different forms of data, only when represented as tensors of numbers.
Tensors are like Python arrays and can change in size. For example, images can be
represented as three-dimensional arrays (height, weight, channel (RGB)). It is common in
deep learning to use tensors of sizes up to five dimensions. Some of the commonly used
tensors are as follows:

Scalar (0-D tensors)
Vector (1-D tensors)

Building Blocks of Neural Networks Chapter 2

[21]

Matrix (2-D tensors)
3-D tensors
Slicing tensors
4-D tensors
5-D tensors
Tensors on GPU

Scalar (0-D tensors)
A tensor containing only one element is called a scalar. It will generally be of type

 or . At the time of writing, PyTorch does not have a special
tensor with zero dimensions. So, we use a one-dimension tensor with one element, as
follows:

Vectors (1-D tensors)
A is simply an array of elements. For example, we can use a vector to store the
average temperature for the last week:

Matrix (2-D tensors)
Most of the structured data is represented in the form of tables or matrices. We will use a
dataset called , which is readily available in the Python scikit-learn
machine learning library. The dataset is a array consisting of samples or rows
and features representing each sample. Torch provides a utility function called

, which converts a array into a tensor. The shape of the
resulting tensor is rows x columns:

Building Blocks of Neural Networks Chapter 2

[22]

3-D tensors
When we add multiple matrices together, we get a 3-D tensor. 3-D tensors are used to
represent data-like images. Images can be represented as numbers in a matrix, which are
stacked together. An example of an image shape is , , , where the first index
represents height, the second represents width, and the third represents a channel (RGB).
Let's see how a computer sees a panda, using the next code snippet:

Building Blocks of Neural Networks Chapter 2

[23]

Since displaying the tensor of size , , would occupy a couple of pages in the book,
we will display the image and learn to slice the image into smaller tensors to visualize it:

Slicing tensors
A common thing to do with a tensor is to slice a portion of it. A simple example could be
choosing the first five elements of a one-dimensional tensor; let's call the tensor . We
use a simple notation, where represents the index
where you want to slice the tensor:

Building Blocks of Neural Networks Chapter 2

[24]

Let's do more interesting things with our panda image, such as see what the panda image
looks like when only one channel is chosen and see how to select the face of the panda.

Here, we select only one channel from the panda image:

 The output is as follows:

Now, lets crop the image. Say we want to build a face detector for pandas and we need just
the face of a panda for that. We crop the tensor image such that it contains only the panda's
face:

Building Blocks of Neural Networks Chapter 2

[25]

 The output is as follows:

Another common example would be where you need to pick a specific element of a tensor:

We will revisit image data in , Deep Learning for Computer Vision, when we discuss
using CNNs to build image classifiers.

Most of the PyTorch tensor operations are very similar to
operations.

Building Blocks of Neural Networks Chapter 2

[26]

4-D tensors
One common example for four-dimensional tensor types is a batch of images. Modern
CPUs and GPUs are optimized to perform the same operations on multiple examples faster.
So, they take a similar time to process one image or a batch of images. So, it is common to
use a batch of examples rather than use a single image at a time. Choosing the batch size is
not straightforward; it depends on several factors. One major restriction for using a bigger
batch or the complete dataset is GPU memory limitations 16, 32, and 64 are commonly
used batch sizes.

Let's look at an example where we load a batch of cat images of size x x x
where 64 represents the batch size or the number of images, 244 represents height and
width, and 3 represents channels:

5-D tensors
One common example where you may have to use a five-dimensional tensor is video data.
Videos can be split into frames, for example, a 30-second video containing a panda playing
with a ball may contain 30 frames, which could be represented as a tensor of shape (1 x 30 x
224 x 224 x 3). A batch of such videos can be represented as tensors of shape (32 x 30 x 224 x
224 x 3) 30 in the example represents, number of frames in that single video clip, where 32
represents the number of such video clips.

Building Blocks of Neural Networks Chapter 2

[27]

Tensors on GPU
We have learned how to represent different forms of data in tensor representation. Some of
the common operations we perform once we have data in the form of tensors are addition,
subtraction, multiplication, dot product, and matrix multiplication. All of these operations
can be either performed on the CPU or the GPU. PyTorch provides a simple function called

 to copy a tensor on the CPU to the GPU. We will take a look at some of the
operations and compare the performance between matrix multiplication operations on the
CPU and GPU.

Tensor addition can be obtained by using the following code:

For tensor matrix multiplication, lets compare the code performance on CPU and GPU. Any
tensor can be moved to the GPU by calling the function.

Multiplication on the GPU runs as follows:

Building Blocks of Neural Networks Chapter 2

[28]

These fundamental operations of addition, subtraction, and matrix multiplication can be
used to build complex operations, such as a Convolution Neural Network (CNN) and
a recurrent neural network (RNN), which we will learn about in the later chapters of the
book.

Variables
Deep learning algorithms are often represented as computation graphs. Here is a simple
example of the variable computation graph that we built in our example:

Each circle in the preceding computation graph represents a variable. A variable forms a
thin wrapper around a tensor object, its gradients, and a reference to the function that
created it. The following figure shows class components:

Building Blocks of Neural Networks Chapter 2

[29]

The gradients refer to the rate of the change of the function with respect to various
parameters (W, b). For example, if the gradient of a is 2, then any change in the value of a
would modify the value of Y by two times. If that is not clear, do not worry most of the
deep learning frameworks take care of calculating gradients for us. In this chapter, we learn
how to use these gradients to improve the performance of our model.

Apart from gradients, a variable also has a reference to the function that created it, which in
turn refers to how each variable was created. For example, the variable has information
that it is generated as a result of the product between and .

Let's look at an example where we create variables and check the gradients and the function
reference:

In the preceding example, we called a operation on the variable to compute the
gradients. By default, the gradients of the variables are none.

The of the variable points to the function it created. If the variable is created by a
user, like the variable in our case, then the function reference is . In the case of
variable it refers to its function reference, .

The Data attribute accesses the tensor associated with the variable.

Building Blocks of Neural Networks Chapter 2

[30]

Creating data for our neural network
The function in our first neural network code creates two variables, and , of
sizes (,) and (). We will take a look at what happens inside the function:

Creating learnable parameters
In our neural network example, we have two learnable parameters, and , and two fixed
parameters, and . We have created variables and in our function.
Learnable parameters are created using random initialization and have the
parameter set to , unlike and , where it is set to . There are different practices
for initializing learnable parameters, which we will explore in the coming chapters. Let's
take a look at our function:

Most of the preceding code is self-explanatory; creates a random value of any
given shape.

Building Blocks of Neural Networks Chapter 2

[31]

Neural network model
Once we have defined the inputs and outputs of the model using PyTorch variables, we
have to build a model which learns how to map the outputs from the inputs. In traditional
programming, we build a function by hand coding different logic to map the inputs to the
outputs. However, in deep learning and machine learning, we learn the function by
showing it the inputs and the associated outputs. In our example, we implement a simple
neural network which tries to map the inputs to outputs, assuming a linear relationship.
The linear relationship can be represented as y = wx + b, where w and b are learnable
parameters. Our network has to learn the values of w and b, so that wx + b will be closer to
the actual y. Let's visualize our training dataset and the model that our neural network has
to learn:

Building Blocks of Neural Networks Chapter 2

[32]

The following figure represents a linear model fitted on input data points:

The dark-gray (blue) line in the image represents the model that our network learns.

Network implementation
As we have all the parameters (, , , and) required to implement the network, we
perform a matrix multiplication between and . Then, sum the result with . That will
give our predicted . The function is implemented as follows:

PyTorch also provides a higher-level abstraction in called layers, which will take
care of most of these underlying initialization and operations associated with most of the
common techniques available in the neural network. We are using the lower-level
operations to understand what happens inside these functions. In later chapters, that is

, Deep Learning for Computer Vision and , Deep Learning with
Sequence Data and Text, we will be relying on the PyTorch abstractions to build complex
neural networks or functions. The previous model can be represented as a layer,
as follows:

Building Blocks of Neural Networks Chapter 2

[33]

Now that we have calculated the values, we need to know how good our model is, which
is done in the function.

Loss function
As we start with random values, our learnable parameters, and , will result in ,
which will not be anywhere close to the actual . So, we need to define a function which
tells the model how close its predictions are to the actual values. Since this is a regression
problem, we use a loss function called sum of squared error (SSE). We take the difference
between the predicted and the actual and square it. SSE helps the model to understand
how close the predicted values are to the actual values. The library has different
loss functions, such as MSELoss and cross-entropy loss. However, for this chapter, let's
implement the function ourselves:

Apart from calculating the loss, we also call the operation, which calculates the
gradients of our learnable parameters, and . As we will use the function more than
once, we remove any previously calculated gradients by calling the
operation. The first time we call the function, the gradients are empty, so we zero
the gradients only when they are not .

Optimize the neural network
We started with random weights to predict our targets and calculate loss for our algorithm.
We calculate the gradients by calling the function on the final variable. This
entire process repeats for one epoch, that is, for the entire set of examples. In most of the
real-world examples, we will do the optimization step per iteration, which is a small subset
of the total set. Once the loss is calculated, we optimize the values with the calculated
gradients so that the loss reduces, which is implemented in the following function:

Building Blocks of Neural Networks Chapter 2

[34]

The learning rate is a hyper-parameter, which allows us to adjust the values in the variables
by a small amount of the gradients, where the gradients denote the direction in which each
variable (and) needs to be adjusted.

Different optimizers, such as Adam, RmsProp, and SGD are already implemented for use in
the package. We will be making use of these optimizers in later chapters to
reduce the loss or improve the accuracy.

Loading data
Preparing data for deep learning algorithms could be a complex pipeline by itself. PyTorch
provides many utility classes that abstract a lot of complexity such as data-parallelization
through multi-threading, data-augmenting, and batching. In this chapter, we will take a
look at two of the important utility classes, namely the class and the
class. To understand how to use these classes, let's take the dataset from
Kaggle () and create a data pipeline that
generates a batch of images in the form of PyTorch tensors.

Dataset class
Any custom dataset class, say for example, our dataset class, has to inherit from the
PyTorch dataset class. The custom class has to implement two main functions, namely

 and . Any custom class acting as a
class should look like the following code snippet:

Building Blocks of Neural Networks Chapter 2

[35]

We do any initialization, if required, inside the method for example, reading the
index of the table and reading the filenames of the images, in our case. The

 operation is responsible for returning the maximum number of elements
in our dataset. The operation returns an element based on the

 every time it is called. The following code implements our
class:

Once the class is created, we can create an object and iterate over it,
which is shown in the following code:

Applying a deep learning algorithm on a single instance of data is not optimal. We need a
batch of data, as modern GPUs are optimized for better performance when executed on a
batch of data. The class helps to create batches by abstracting a lot of
complexity.

DataLoader class
The class present in PyTorch's class combines a dataset object along
with different samplers, such as and , and provides
us with a batch of images, either using a single or multi-process iterators. Samplers are
different strategies for providing data to algorithms. The following is an example of a

 for our dataset:

 will contain a tensor of shape (32, 224, 224, 3), where 32 represents the batch size.

Building Blocks of Neural Networks Chapter 2

[36]

The PyTorch team also maintains two useful libraries, called and
, which are built on top of the and classes. We will use

them in the relevant chapters.

Summary
In this chapter, we explored various data structures and operations provided by PyTorch.
We implemented several components, using the fundamental blocks of PyTorch. For our
data preparation, we created the tensors used by our algorithm. Our network architecture
was a model for learning to predict average hours spent by users on our Wondermovies
platform. We used the loss function to check the standard of our model and used the

 function to adjust the learnable parameters of our model to make it perform
better.

We also looked at how PyTorch makes it easier to create data pipelines by abstracting away
several complexities that would require us to parallelize and augment data.

In the next chapter, we will dive deep into how neural networks and deep learning
algorithms work. We will explore various PyTorch built-in modules for building network
architectures, loss functions, and optimizations. We will also show how to use them on real-
world datasets.

33
Diving Deep into Neural

Networks
In this chapter, we will explore the different modules of deep learning architectures that are
used to solve real-world problems. In the previous chapter, we used low-level operations of
PyTorch to build modules such as a network architecture, a loss function, and an optimizer.
In this chapter, we will explore some of the important components of neural networks
required to solve real-world problems, along with how PyTorch abstracts away a lot of
complexity by providing a lot of high-level functions. Towards the end of the chapter, we
will build algorithms that solve real-world problems such as regression, binary
classification, and multi-class classification.

In this chapter, we will go through following topics:

Deep dive into the various building blocks of neural networks
Exploring higher-level functionalities in PyTorch to build deep learning
architectures
Applying deep learning to a real-world image classification problem

Deep dive into the building blocks of neural
networks
As we learned in the previous chapter, training a deep learning algorithm requires the
following steps:

Building a data pipeline1.

Diving Deep into Neural Networks Chapter 3

[38]

Building a network architecture2.
Evaluating the architecture using a loss function3.
Optimizing the network architecture weights using an optimization algorithm4.

In the previous chapter, the network was composed of a simple linear model built using
PyTorch numerical operations. Though building a neural architecture for a toy problem
using numerical operations is easier, it quickly becomes complicated when we try to build
architectures required to solve complex problems in different areas, such as computer
vision and natural language processing (NLP). Most of the deep learning frameworks, such
as PyTorch, TensorFlow, and Apache MXNet, provide higher-level functionalities that
abstract a lot of this complexity. These higher-level functionalities are called layers across
the deep learning frameworks. They accept input data, apply transformations like the ones
we have seen in the previous chapter, and output the data. To solve real-world problems,
deep learning architectures constitute of a number of layers ranging from 1 to 150, or
sometimes more than that. Abstracting the low-level operations and training deep learning
algorithms would look like the following diagram:

Diving Deep into Neural Networks Chapter 3

[39]

Summarizing the previous diagram, any deep learning training involves getting data,
building an architecture that in general is getting a bunch of layers together, evaluating the
accuracy of the model using a loss function, and then optimizing the algorithm by
optimizing the weights of our network. Before looking at solving some of the real-world
problems, we will come to understand higher-level abstractions provided by PyTorch for
building layers, loss functions, and optimizers.

Layers fundamental blocks of neural networks
Throughout the rest of the chapter, we will come across different types of layers. To begin,
let's try to understand one of the most important layers, the linear layer, which does exactly
what our previous network architecture does. The linear layer applies a linear
transformation:

What makes it powerful is that fact that the entire function that we wrote in the previous
chapter can be written in a single line of code, as follows:

The in the preceding code will accept a tensor of size and outputs a tensor of
size after applying linear transformation. Let's look at a simple example of how to do that:

We can access the trainable parameters of the layer using the and attributes:

Output

Diving Deep into Neural Networks Chapter 3

[40]

Output :

Linear layers are called by different names, such as dense or fully connected layers across
different frameworks. Deep learning architectures used for solving real-world use cases
generally contain more than one layer. In PyTorch, we can do it in multiple ways, shown as
follows.

One simple approach is passing the output of one layer to another layer:

Each layer will have its own learnable parameters. The idea behind using multiple layers is
that each layer will learn some kind of pattern that the later layers will build on. There is a
problem in adding just linear layers together, as they fail to learn anything new beyond a
simple representation of a linear layer. Let's see through a simple example of why it does
not make sense to stack multiple linear layers together.

Let's say we have two linear layers with the following weights:

Layers Weight1

Layer1 3.0

Layer2 2.0

The preceding architecture with two different layers can be simply represented as a single
layer with a different layer. Hence, just stacking multiple linear layers will not help our
algorithms to learn anything new. Sometimes, this can be unclear, so we can visualize the
architecture with the following mathematical formulas:

Diving Deep into Neural Networks Chapter 3

[41]

To solve this problem, we have different non-linearity functions that help in learning
different relationships, rather than only focusing on linear relationships.

There are many different non-linear functions available in deep learning. PyTorch provides
these non-linear functionalities as layers and we will be able to use them the same way we
used the linear layer.

Some of the popular non-linear functions are as follows:

Sigmoid
Tanh
ReLU
Leaky ReLU

Non-linear activations
Non-linear activations are functions that take inputs and then apply a mathematical
transformation and produce an output. There are several non-linear operations that we
come across in practice. We will go through some of the popular non-linear activation
functions.

Sigmoid
The sigmoid activation function has a simple mathematical form, as follows:

Diving Deep into Neural Networks Chapter 3

[42]

The sigmoid function intuitively takes a real-valued number and outputs a number in a
range between zero and one. For a large negative number, it returns close to zero and, for a
large positive number, it returns close to one. The following plot represents different
sigmoid function outputs:

The sigmoid function has been historically used across different architectures, but in recent
times it has gone out of popularity as it has one major drawback. When the output of the
sigmoid function is close to zero or one, the gradients for the layers before the sigmoid
function are close to zero and, hence, the learnable parameters of the previous layer get
gradients close to zero and the weights do not get adjusted often, resulting in dead neurons.

Diving Deep into Neural Networks Chapter 3

[43]

Tanh
The tanh non-linearity function squashes a real-valued number in the range of -1 and 1. The
tanh also faces the same issue of saturating gradients when tanh outputs extreme values
close to -1 and 1. However, it is preferred to sigmoid, as the output of tanh is zero centered:

ReLU
ReLU has become more popular in the recent years; we can find either its usage or one of its
variants' usages in almost any modern architecture. It has a simple mathematical
formulation:

f(x)=max(0,x)

Diving Deep into Neural Networks Chapter 3

[44]

In simple words, ReLU squashes any input that is negative to zero and leaves positive
numbers as they are. We can visualize the ReLU function as follows:

Some of the pros and cons of using ReLU are as follows:

It helps the optimizer in finding the right set of weights sooner. More technically
it makes the convergence of stochastic gradient descent faster.
It is computationally inexpensive, as we are just thresholding and not calculating
anything like we did for the sigmoid and tangent functions.
ReLU has one disadvantage; when a large gradient passes through it during the
backward propagation, they often become non-responsive; these are called dead
neutrons, which can be controlled by carefully choosing the learning rate. We
will discuss how to choose learning rates when we discuss the different ways to
adjust the learning rate in , Fundamentals of Machine Learning.

Diving Deep into Neural Networks Chapter 3

[45]

Leaky ReLU
Leaky ReLU is an attempt to solve a dying problem where, instead of saturating to zero, we
saturate to a very small number such as 0.001. For some use cases, this activation function
provides a superior performance to others, but it is not consistent.

PyTorch non-linear activations
PyTorch has most of the common non-linear activation functions implemented for us
already and it can be used like any other layer. Let's see a quick example of how to use the

 function in PyTorch:

In the preceding example, we take a tensor with two positive values and two negative
values and apply a on it, which thresholds the negative numbers to and retains the
positive numbers as they are.

Now we have covered most of the details required for building a network architecture, let's
build a deep learning architecture that can be used to solve real-world problems. In the
previous chapter, we used a simple approach so that we could focus only on how a deep
learning algorithm works. We will not be using that style to build our architecture anymore;
rather, we will be building the architecture in the way it is supposed to be built in PyTorch.

Diving Deep into Neural Networks Chapter 3

[46]

The PyTorch way of building deep learning algorithms
All the networks in PyTorch are implemented as classes, subclassing a PyTorch class called

, and should implement and methods. Inside the
function, we initialize any layers, such as the layer, which we covered in the
previous section. In the method, we pass our input data into the layers that we
initialized in our method and return our final output. The non-linear functions are
often directly used in the function and some use it in the method too. The
following code snippet shows how a deep learning architecture is implemented in PyTorch:

If you are new to Python, some of the preceding code could be difficult to understand, but
all it is doing is inheriting a parent class and implementing two methods in it. In Python, we
subclass by passing the parent class as an argument to the class name. The method
acts as a constructor in Python and is used to pass on arguments of the child class to
the parent class, which in our case is .

Model architecture for different machine learning
problems
The kind of problem we are solving will decide mostly what layers we will use, starting
from a linear layer to Long Short-Term Memory (LSTM) for sequential data. Based on the
type of the problem you are trying to solve, your last layer is determined. There are three
problems that we generally solve using any machine learning or deep learning algorithms.
Let's look at what the last layer would look like:

For a regression problem, such as predicting the price of a t-shirt to sell, we
would use the last layer as a linear layer with an output of one, which outputs a
continuous value.

Diving Deep into Neural Networks Chapter 3

[47]

For classifying a given image as t-shirt or shirt, you would use a sigmoid
activation function, as it outputs values either closer to one or zero, which is
generally called a binary classification problem.
For a multi-class classification, where we have to classify whether a given image
is a t-shirt, jeans, shirt, or dress, we would use a softmax layer at the end our
network. Let's try to understand intuitively what softmax does without going
into the math of it. It takes inputs from the previous linear layer, for example, and
outputs the probabilities for a given number of examples. In our example, it
would be trained to predict four probabilities for each type of image. Remember,
all these probabilities always add up to one.

Loss functions
Once we have defined our network architecture, we are left with two important steps. One
is calculating how good our network is at performing a particular task of regression,
classification, and the next is optimizing the weight.

The optimizer (gradient descent) generally accepts a scalar value, so our function
should generate a scalar value that has to be minimized during our training. Certain use
cases, such as predicting where an obstacle is on the road and classifying it to a pedestrian
or not, would require two or more loss functions. Even in such scenarios, we need to
combine the losses to a single scalar for the optimizer to minimize. We will discuss
examples of combining multiple losses to a single scalar in detail with a real-world example
in the last chapter.

In the previous chapter, we defined our own function. PyTorch provides several
implementations of commonly used functions. Let's take a look at the functions
used for regression and classification.

The commonly used function for regression problems is mean square error (MSE). It
is the same function we implemented in our previous chapter. We can use the
function implemented in PyTorch, as follows:

Diving Deep into Neural Networks Chapter 3

[48]

For classification, we use a cross-entropy loss. Before looking at the math for cross-entropy,
let's understand what a cross-entropy loss does. It calculates the loss of a classification
network predicting the probabilities, which should sum up to one, like our softmax layer. A
cross-entropy loss increases when the predicted probability diverges from the correct
probability. For example, if our classification algorithm predicts 0.1 probability for the
following image to be a cat, but it is actually a panda, then the cross-entropy loss will be
higher. If it predicts similar to the actual labels, then the cross-entropy loss will be lower:

Let's look at a sample implementation of how this actually happens in Python code:

To use a cross-entropy loss in a classification problem, we really do not need to be worried
about what happens inside all we have to remember is that, the loss will be high when our
predictions are bad and low when predictions are good. PyTorch provides us with an
implementation of the , which we can use, as follows:

Diving Deep into Neural Networks Chapter 3

[49]

Some of the other functions that come as part of PyTorch are as follows:

L1 loss Mostly used as a regularizer. We will discuss it further in
, Fundamentals of Machine Learning.

MSE loss Used as loss function for regression problems.

Cross-entropy loss Used for binary and multi-class classification problems.

NLL Loss Used for classification problems and allows us to use specific
weights to handle imbalanced datasets.

NLL Loss2d Used for pixel-wise classification, mostly for problems related to
image segmentation.

Optimizing network architecture
Once we have calculated the loss of our network, we will optimize the weights to reduce
the loss and thus improving the accuracy of the algorithm. For the sake of simplicity, let's
see these optimizers as black boxes that take loss functions and all the learnable parameters
and move them slightly to improve our performances. PyTorch provides most of the
commonly used optimizers required in deep learning. If you want to explore what happens
inside these optimizers and have a mathematical background, I would strongly recommend
some of the following blogs:

Some of the optimizers that PyTorch provides are as follows:

ADADELTA
Adagrad
Adam
SparseAdam
Adamax
ASGD
LBFGS
RMSProp
Rprop
SGD

Diving Deep into Neural Networks Chapter 3

[50]

We will get into the details of some of the algorithms in , Fundamentals of Machine
Learning, along with some of the advantages and tradeoffs. Let's walk through some of the
important steps in creating any :

In the preceding example, we created an optimizer that takes all the learnable
parameters of your network as the first argument and a learning rate that determines what
ratio of change can be made to the learnable parameter. In , Fundamentals of
Machine Learning we will get into more details of learning rates and momentum, which is an
important parameter of optimizers. Once you create an optimizer object, we need to call

 inside our loop, as the parameters will accumulate the gradients created
during the previous call:

Once we call on the function, which calculates the gradients (quantity by
which learnable parameters need to change), we call , which makes the
actual changes to our learnable parameter.

Now, we have covered most of the components required to help a computer see/ recognize
images. Let's build a complex deep learning model that can differentiate between dogs and
cats to put all the theory into practice.

Image classification using deep learning
The most important step in solving any real-world problem is to get the data. Kaggle
provides a huge number of competitions on different data science problems. We will pick
one of the problems that arose in 2014, which we will use to test our deep learning
algorithms in this chapter and improve it in , Deep Learning for Computer Vision,
which will be on Convolution Neural Networks (CNNs) and some of the advanced
techniques that we can use to improve the performance of our image recognition models.
You can download the data from . The
dataset contains 25,000 images of dogs and cats. Preprocessing of data and the creation of
train, validation, and test splits are some of the important steps that need to be performed
before we can implement an algorithm. Once the data is downloaded, taking a look at it, it
shows that the folder contains images in the following format:

Diving Deep into Neural Networks Chapter 3

[51]

Most of the frameworks make it easier to read the images and tag them to their labels when
provided in the following format. That means that each class should have a separate folder
of its images. Here, all cat images should be in the folder and dog images in the
folder:

Diving Deep into Neural Networks Chapter 3

[52]

Python makes it easy to put the data into the right format. Let's quickly take a look at the
code and, then, we will go through the important parts of it:

All the preceding code does is retrieve all the files and pick 2,000 images for creating a
validation set. It segregates all the images into the two categories of cats and dogs. It is a
common and important practice to create a separate validation set, as it is not fair to test our
algorithms on the same data it is trained on. To create a dataset, we create a
list of numbers that are in the range of the length of the images in a shuffled order. The
shuffled numbers act as an index for us to pick a bunch of images for creating our

 dataset. Let's go through each section of the code in detail.

Diving Deep into Neural Networks Chapter 3

[53]

We create a file using the following code:

The method returns all the files in the particular path. When there are a huge number
of images, we can also use , which returns an iterator, instead of loading the names
into memory. In our case, we have only 25,000 filenames, which can easily fit into memory.

We can shuffle our files using the following code:

The preceding code returns 25,000 numbers in the range from zero to 25,000 in a shuffled
order, which we will use as an index for selecting a subset of images to create a

 dataset.

We can create a validation code, as follows:

The preceding code creates a folder and creates folders based on categories
(cats and dogs) inside and directories.

We can shuffle an index with the following code:

In the preceding code, we use our shuffled index to randomly pick different images
for our validation set. We do something similar for the training data to segregate the images
in the directory.

As we have the data in the format we need, let's quickly look at how to load the images as
PyTorch tensors.

Diving Deep into Neural Networks Chapter 3

[54]

Loading data into PyTorch tensors
The PyTorch package provides a utility class called

 that can be used to load images along with their associated labels when data
is presented in the aforementioned format. It is a common practice to perform the following
preprocessing steps:

Resize all the images to the same size. Most of the deep learning architectures1.
expect the images to be of the same size.
Normalize the dataset with the mean and standard deviation of the dataset.2.
Convert the image dataset to a PyTorch tensor.3.

PyTorch makes a lot of these preprocessing steps easier by providing a lot of utility
functions in the module. For our example, let's apply three transformations:

Scale to a 256 x 256 image size
Convert to a PyTorch tensor
Normalize the data (we will talk about how we arrived at the mean and standard
deviation in , Deep Learning for Computer Vision)

The following code demonstrates how transformation can be applied and images are loaded
using the class:

The object holds all the images and associated labels for the dataset. It contains two
important attributes: one that gives a mapping between classes and the associated index
used in the dataset and another one that gives a list of classes:

It is often a best practice to visualize the data loaded into tensors. To visualize the tensors,
we have to reshape the tensors and denormalize the values. The following function does
that for us:

Diving Deep into Neural Networks Chapter 3

[55]

Now, we can pass our tensor to the preceding function, which converts it into an
image:

The preceding code generates the following output:

Loading PyTorch tensors as batches
It is a common practice in deep learning or machine learning to batch samples of images, as
modern graphics processing units (GPUs) and CPUs are optimized to run operations faster
on a batch of images. The batch size generally varies depending on the kind of GPU we use.
Each GPU has its own memory, which can vary from 2 GB to 12 GB, and sometimes more
for commercial GPUs. PyTorch provides the class, which takes in a dataset
and returns us a batch of images. It abstracts a lot of complexities in batching, such as the
usage of multi-workers for applying transformation. The following code converts the
previous and datasets into data loaders:

Diving Deep into Neural Networks Chapter 3

[56]

The class provides us with a lot of options and some of the most commonly
used ones are as follows:

: When true, this shuffles the images every time the data loader is called.
: This is responsible for parallelization. It is common practice to use

a number of workers fewer than the number of cores available in your machine.

Building the network architecture
For most of the real-world use cases, particularly in computer vision, we rarely build our
own architecture. There are different architectures that can be quickly used to solve our
real-world problems. For our example, we use a popular deep learning algorithm called
ResNet, which won the first prize in 2015 in different competitions, such as ImageNet,
related to computer vision. For a simpler understanding, let's assume that this algorithm is
a bunch of different PyTorch layers carefully tied together and not focus on what happens
inside this algorithm. We will see some of the key building blocks of the ResNet algorithm
in , Deep Learning for Computer Vision, when we learn about CNNs. PyTorch
makes it easier to use a lot of these popular algorithms by providing them off the shelf in
the module. So, for this example, let's quickly take a look at how to
use this algorithm and then walk through each line of code:

The object creates an instance of the algorithm,
which is a collection of PyTorch layers. We can take a quick look at what constitutes the
ResNet algorithm by printing . A small portion of the algorithm looks like the
following screenshot. I am not including the full algorithm as it could run for several pages:

Diving Deep into Neural Networks Chapter 3

[57]

As we can see, the ResNet architecture is a collection of layers, namely ,
, and , stitched in a particular way. All these algorithms will

accept an argument called pretrained. When is , the weights of the
algorithm are already tuned for a particular ImageNet classification problem of predicting
1,000 different categories, which include cars, ships, fish, cats, and dogs. This algorithm is
trained to predict the 1,000 ImageNet categories and the weights are adjusted to a certain
point where the algorithm achieves state-of-art accuracy. These weights are stored and
shared with the model that we are using for the use case. Algorithms tend to work better
when started with fine-tuned weights, rather than when started with random weights. So,
for our use case, we start with pretrained weights.

Diving Deep into Neural Networks Chapter 3

[58]

The ResNet algorithm cannot be used directly, as it is trained to predict one of the 1,000
categories. For our use case, we need to predict only one of the two categories of dogs and
cats. To achieve this, we take the last layer of the ResNet model, which is a layer
and change the output features to two, as shown in the following code:

If you are running this algorithm on a GPU-based machine, then to make the algorithm run
on a GPU we call the method on the model. It is strongly recommended that you run
these programs on a GPU-powered machine; it is easy to spin a cloud instance with a GPU
for less than a dollar. The last line in the following code snippet tells PyTorch to run the
code on the GPU:

Training the model
In the previous sections, we have created instances and algorithms. Now, let's
train the model. To do this we need a function and an :

In the preceding code, we created our function based on and the
optimizer based on . The function helps in dynamically changing the learning
rate. We will discuss different strategies available to tune the learning rate in ,
Fundamentals of Machine Learning.

Diving Deep into Neural Networks Chapter 3

[59]

The following function takes in a model and tunes the weights of our
algorithm by running multiple epochs and reducing the loss:

Diving Deep into Neural Networks Chapter 3

[60]

The preceding function does the following:

Passes the images through the model and calculates the loss.1.
Backpropagates during the training phase. For the validation/testing phase, it2.
does not adjust the weights.
The loss is accumulated across batches for each epoch.3.
The best model is stored and validation accuracy is printed.4.

The preceding model, after running for epochs, results in a validation accuracy of 87%.
The following is the log generated by the preceding function when run on
our dataset; I am just including the result of the last few epochs to save
space in the book:

Diving Deep into Neural Networks Chapter 3

[61]

In the coming chapters, we will learn more advanced techniques that will help us in
training more accurate models in a much faster way. The preceding model took around 30
minutes to run on a Titan X GPU. We will cover different techniques that will help in
training the model faster.

Diving Deep into Neural Networks Chapter 3

[62]

Summary
In this chapter, we explored the complete life cycle of a neural network in Pytorch, starting
from constituting different types of layers, adding activations, calculating cross-entropy
loss, and finally optimizing network performance (that is, minimizing loss), by adjusting
the weights of layers using the SGD optimizer.

We have studied how to apply the popular ResNET architecture to binary or multi-class
classification problems.

While doing this, we have tried to solve the real-world image classification problem of
classifying a cat image as a cat and a dog image as a dog. This knowledge can be applied to
classify different categories/classes of entities, such as classifying species of fish, identifying
different kinds of dogs, categorizing plant seedlings, grouping together cervical cancer into
Type 1, Type 2, and Type 3, and much more.

In the next chapter, we will go through the fundamentals of machine learning.

44
Fundamentals of Machine

Learning
In the previous chapters, we saw practical examples of how to build deep learning models
to solve classification and regression problems, such as image classification and average
user view predictions. Similarly, we developed an intuition on how to frame a deep
learning problem. In this chapter, we will take a look at how we can attack different kinds
of problems and different tweaks that we will potentially end up using to improve our
model's performance on our problems.

In this chapter, we will explore:

Other forms of problems beyond classification and regression
Problems with evaluation, understanding overfitting, underfitting, and
techniques to solve them
Preparing data for deep learning

Remember, most of the topics that we discuss in this chapter are common to machine
learning and deep learning, except for some of the techniques such as dropout that we
use to solve overfitting problems.

Three kinds of machine learning problems
In all our previous examples, we tried to solve either classification (predicting cats or dogs)
or regression (predicting the average time users spend in the platform) problems. All these
are examples of supervised learning, where the goal is to map the relationship between
training examples and their targets and use it to make predictions on unseen data.

Fundamentals of Machine Learning Chapter 4

[64]

Supervised learning is just one part of machine learning, and there are other different parts
of machine learning. There are three different kinds of machine learning:

Supervised learning
Unsupervised learning
Reinforcement learning

Let's look in detail at the kinds of algorithms.

Supervised learning
Most of the successful use cases in the deep learning and machine learning space fall under
supervised learning. Most of the examples we cover in this book will also be part of this.
Some of the common examples of supervised learning are:

Classification problems: Classifying dogs and cats.
Regression problems: Predicting stock prices, cricket match scores, and so on.
Image segmentation: Doing a pixel-level classification. For a self-driving car, it is
important to identify what each pixel belongs to from the photo taken by its
camera. The pixel could belong to a car, pedestrian, tree, bus, and so on.
Speech recognition: OK Google, Alexa, and Siri are good examples of speech
recognition.
Language translation: Translating speech from one language to another
language.

Unsupervised learning
When there is no label data, unsupervised learning techniques help in understanding the
data by visualizing and compressing. The two commonly-used techniques in unsupervised
learning are:

Clustering
Dimensionality reduction

Clustering helps in grouping all similar data points together. Dimensionality reduction
helps in reducing the number of dimensions, so that we can visualize high-dimensional
data to find any hidden patterns.

Fundamentals of Machine Learning Chapter 4

[65]

Reinforcement learning
Reinforcement learning is the least popular machine learning category. It did not find its
success in real-world use cases. However, it has changed in recent years, and teams from
Google DeepMind were able to successfully build systems based on reinforcement learning
and were able to win the AlphaGo game against the world champion. This kind of
technology advancement, where a computer can beat a human in a game, was considered to
take more than a few decades for computers to achieve. However, deep learning combined
with reinforcement learning was able to achieve it far sooner than anyone would have
anticipated. These techniques have started seeing early success, and it could probably take a
few years for it to become mainstream.

In this book, we will focus mostly on the supervised techniques and some of the
unsupervised techniques that are specific to deep learning, such as generative networks
used for creating images of a particular style called style transfer and generative
adversarial networks.

Machine learning glossary
In the last few chapters, we have used lot of terminology that could be completely new to
you if you are just entering the machine learning or deep learning space. We will list a lot of
commonly-used terms in machine learning, which are also used in the deep learning
literature:

Sample or input or data point: These mean particular instances of training a set.
In our image classification problem seen in the last chapter, each image can be
referred to as a sample, input, or data point.
Prediction or output: The value our algorithm generates as an output. For
example, in our previous example our algorithm predicted a particular image as
0, which is the label given to cat, so the number 0 is our prediction or output.
Target or label: The actual tagged label for an image.
Loss value or prediction error: Some measure of distance between the predicted
value and actual value. The smaller the value, the better the accuracy.
Classes: Possible set of values or labels for a given dataset. In the example in our
previous chapter, we had two classes cats and dogs.
Binary classification: A classification task where each input example should be
classified as either one of the two exclusive categories.
Multi-class classification: A classification task where each input example can be
classified into of more than two different categories.

Fundamentals of Machine Learning Chapter 4

[66]

Multi-label classification: An input example can be tagged with multiple
labels for example, tagging a restaurant with different types of food it serves
such as Italian, Mexican, and Indian. Another commonly-used example is object
detection in an image, where the algorithm identifies different objects in the
image.
Scalar regression: Each input data point will be associated with one scalar
quality, which is a number. Some examples could be predicting house prices,
stock prices, and cricket scores.
Vector regression: Where the algorithm needs to predict more than one scalar
quantity. One good example is when you try to identify the bounding box that
contains the location of a fish in an image. In order to predict the bounding box,
your algorithm needs to predict four scalar quantities denoting the edges of a
square.
Batch: For most cases, we train our algorithm on a bunch of input samples
referred to as the batch. The batch size varies generally from 2 to 256, depending
on the GPU's memory. The weights are also updated for each batch, so the
algorithms tend to learn faster than when trained on a single example.
Epoch: Running the algorithm through a complete dataset is called an epoch. It is
common to train (update the weights) for several epochs.

Evaluating machine learning models
In the example of image classification that we covered in the last chapter, we split the data
into two different halves, one for training and one for validation. It is a good practice to use
a separate dataset to test the performance of your algorithm, as testing the algorithm on the
training set may not give you the true generalization power of the algorithm. In most real-
world use cases, based on the validation accuracy, we often tweak our algorithm in
different ways, such as adding more layers or different layers, or using different techniques
that we will cover in the later part of the chapter. So, there is a higher chance that your
choices for tweaking the algorithm are based on the validation dataset. Algorithms trained
this way tend to perform well in the training dataset and the validation dataset, but fail to
generalize well on unseen data. This is due to an information leak from your validation
dataset, which influences us in tweaking the algorithm.

Fundamentals of Machine Learning Chapter 4

[67]

To avoid the problem of an information leak and improve generalization, it is often a
common practice to split the dataset into three different parts, namely a training, validation,
and test dataset. We do the training and do all the hyper parameter tuning of the algorithm
using the training and validation set. At the end, when the entire training is done, then you
will test the algorithm on the test dataset. There are two types of parameters that we talk
about. One is the parameters or weights that are used inside an algorithm, which are tuned
by the optimizer or during backpropagation. The other set of parameters, called hyper
parameters, controls the number of layers used in the network, learning rate, and other
types of parameter that generally change the architecture, which is often done manually.

The phenomenon of a particular algorithm performing better in the training set and failing
to perform on the validation or test set is called overfitting, or the lack of the algorithm's
ability to generalize. There is an opposite phenomenon where the algorithm fails to perform
for the training set, which is called underfitting. We will look at different strategies that will
help us in overcoming the overfitting and underfitting problems.

Let's look at the various strategies available for splitting the dataset before looking at
overfitting and underfitting.

Training, validation, and test split
It is best practice to split the data into three parts training, validation, and test datasets.
The best approach for using the holdout dataset is to:

Train the algorithm on the training dataset1.
Perform hyper parameter tuning based on the validation dataset2.
Perform the first two steps iteratively until the expected performance is achieved3.
After freezing the algorithm and the hyper parameters, evaluate it on the test4.
dataset

Avoid splitting the data into two parts, as it may lead to an information leak. Training and
testing it on the same dataset is a clear no-no as it does not guarantee algorithm
generalization. There are three popular holdout strategies that can be used to split the data
into training and validation sets. They are as follows:

Simple holdout validation
K-fold validation
Iterated k-fold validation

Fundamentals of Machine Learning Chapter 4

[68]

Simple holdout validation
Set apart a fraction of the data as your test dataset. What fraction to keep may be very
problem-specific and could largely depend on the amount of data available. For problems
particularly in the fields of computer vision and NLP, collecting labeled data could be very
expensive, so to hold out a large fraction of 30% may make it difficult for the algorithm to
learn, as it will have less data to train on. So, depending on the data availability, choose the
fraction of it wisely. Once the test data is split, keep it apart until you freeze the algorithm
and its hyper parameters. For choosing the best hyper parameters for the problem, choose a
separate validation dataset. To avoid overfitting, we generally divide available data into
three different sets, as shown in following image:

We used a simple implementation of the preceding figure in the last chapter to create our
validation set. Let's look at a snapshot of the implementation:

This is one of the simplest holdout strategies and is commonly used to start with. There is a
disadvantage of using this with small datasets. The validation dataset or test dataset may
not be statistically representative of the data at hand. We can easily recognize this by
shuffling the data before holding out. If the results obtained are not consistent, then we
need to use a better approach. To avoid this issue, we often end up using k-fold or iterated
k-fold validation.

Fundamentals of Machine Learning Chapter 4

[69]

K-fold validation
Keep a fraction of the dataset for the test split, then divide the entire dataset into k-folds
where k can be any number, generally varying from two to ten. At any given iteration, we
hold one block for validation and train the algorithm on the rest of the blocks. The final
score is generally the average of all the scores obtained across the k-folds. The following
diagram shows an implementation of k-fold validation where k is four; that is, the data is
split into four parts:

One key thing to note when using the k-fold validation dataset is that it is very expensive,
because you run the algorithm several times on different parts of the dataset, which can
turn out to be very expensive for computation-intensive algorithms particularly in areas of
computer vision algorithms, where, sometimes, training an algorithm could take anywhere
from minutes to days. So, use this technique wisely.

K-fold validation with shuffling
To make things complex and robust, you can shuffle the data every time you create your
holdout validation dataset. It is very helpful for solving problems where a small boost in
performance could have a huge business impact. If your case is to quickly build and deploy
algorithms and you are OK with compromising a few percent in performance difference,
then this approach may not be worth it. It all boils down to what problem you are trying to
solve, and what accuracy means to you.

Fundamentals of Machine Learning Chapter 4

[70]

There are a few other things that you may need to consider when splitting up the data, such
as:

Data representativeness
Time sensitivity
Data redundancy

In the example we saw in our last chapter, we classified images as either dogs or cats. Let's
take a scenario where all the images are sorted and the first 60% of images are dogs and the
rest are cats. If we split this dataset by choosing the first 80% as the training dataset and the
rest as the validation set, then the validation dataset will not be a true representation of the
dataset, as it will only contain cat images. So, in these cases, care should be taken that we
have a good mix by shuffling the data before splitting or doing a stratified sampling.
Stratified sampling refers to picking up data points from each category to create validation
and test datasets.

Let's take the case of predicting stock prices. We have data from January to December. In
this case, if we do a shuffle or stratified sampling then we end up with an information leak,
as the prices could be sensitive to time. So, create the validation dataset in such a way that
there is no information leak. In this case, choosing the December data as the validation
dataset could make more sense. In the case of stock prices it is more complex than this, so
domain-specific knowledge also comes into play when choosing the validation split.

Duplicates are common in data. Care should be taken so that the data present in the
training, validation, and test sets are unique. If there are duplicates, then the model may not
generalize well on unseen data.

Fundamentals of Machine Learning Chapter 4

[71]

Data preprocessing and feature engineering
We have looked at different ways to split our datasets to build our evaluation strategy. In
most cases, the data that we receive may not be in a format that can be readily used by us
for training our algorithms. In this section, we will cover some of the preprocessing
techniques and feature engineering techniques. Though most of the feature engineering
techniques are domain-specific, particularly in the areas of computer vision and text, there
are some common feature engineering techniques that are common across the board, which
we will discuss in this chapter.

Data preprocessing for neural networks is a process in which we make the data more
suitable for the deep learning algorithms to train on. The following are some of the
commonly-used data preprocessing steps:

Vectorization
Normalization
Missing values
Feature extraction

Vectorization
Data comes in various formats such as text, sound, images, and video. The very first thing
that needs to be done is to convert the data into PyTorch tensors. In the previous example,
we used utility functions to convert Python Imaging Library (PIL) images
into a Tensor object, though most of the complexity is abstracted away by the PyTorch
torchvision libraries. In , Generative Networks, when we deal with recurrent neural
networks (RNNs), we will see how text data can be converted into PyTorch tensors. For
problems involving structured data, the data is already present in a vectorized format; all
we need to do is convert them into PyTorch tensors.

Value normalization
It is a common practice to normalize features before passing the data to any machine
learning algorithm or deep learning algorithm. It helps in training the algorithms faster and
helps in achieving more performance. Normalization is the process in which you represent
data belonging to a particular feature in such a way that its mean is zero and standard
deviation is one.

Fundamentals of Machine Learning Chapter 4

[72]

In the example of dogs and cats, the classification that we covered in the last chapter, we
normalized the data by using the mean and standard deviation of the data available in the

 dataset. The reason we chose the dataset's mean and standard
deviation for our example is that we are using the weights of the ResNet model, which was
pretrained on ImageNet. It is also a common practice to divide each pixel value by 255 so
that all the values fall in the range between zero and one, particularly when you are not
using pretrained weights.

Normalization is also applied for problems involving structured data. Say we are working
on a house price prediction problem there could be different features that could fall in
different scales. For example, distance to the nearest airport and the age of the house are
variables or features that could be in different scales. Using them with neural networks as
they are could prevent the gradients from converging. In simple words, loss may not go
down as expected. So, we should be careful to apply normalization to any kind of data
before training on our algorithms. To ensure that the algorithm or model performs better,
ensure that the data follows the following characteristics:

Take small values: Typically in a range between zero and one
Same range: Ensure all the features are in the same range

Handling missing values
Missing values are quite common in real-world machine learning problems. From our
previous examples of predicting house prices, certain fields for the age of the house could
be missing. It is often safe to replace the missing values with a number that may not occur
otherwise. The algorithms will be able to identify the pattern. There are other techniques
that are available to handle missing values that are more domain-specific.

Feature engineering
Feature engineering is the process of using domain knowledge about a particular problem
to create new variables or features that can be passed to the model. To understand better,
let's look at a sales prediction problem. Say we have information about promotion dates,
holidays, competitor's start date, distance from competitor, and sales for a particular day. In
the real world, there could be hundreds of features that may be useful in predicting the
prices of stores. There could be certain information that could be important in predicting
the sales. Some of the important features or derived values are:

Days until the next promotion

Fundamentals of Machine Learning Chapter 4

[73]

Days left before the next holiday
Number of days the competitor's business has been open

There could be many more such features that can be extracted that come from domain
knowledge. Extracting these kinds of features for any machine learning algorithm or deep
learning algorithm could be quite challenging for the algorithms to perform themselves. For
certain domains, particularly in the fields of computer vision and text, modern deep
learning algorithms help us in getting away with feature engineering. Except for these
fields, good feature engineering always helps in the following:

The problem can be solved a lot faster with less computational resource.
The deep learning algorithms can learn features without manually engineering
them by using huge amounts of data. So, if you are tight on data, then it is good
to focus on good feature engineering.

Overfitting and underfitting
Understanding overfitting and underfitting is the key to building successful machine
learning and deep learning models. At the start of the chapter, we briefly covered what
underfitting and overfitting are; let's take a look at them in detail and how we can solve
them.

Overfitting, or not generalizing, is a common problem in machine learning and deep
learning. We say a particular algorithm overfits when it performs well on the training
dataset but fails to perform on unseen or validation and test datasets. This mostly occurs
due to the algorithm identifying patterns that are too specific to the training dataset. In
simpler words, we can say that the algorithm figures out a way to memorize the dataset so
that it performs really well on the training dataset and fails to perform on the unseen data.
There are different techniques that can be used to avoid the algorithm overfitting. Some of
the techniques are:

Getting more data
Reducing the size of the network
Applying weight regularizer
Applying dropout

Fundamentals of Machine Learning Chapter 4

[74]

Getting more data
If you are able to get more data on which the algorithm can train, that can help the
algorithm to avoid overfitting by focusing on general patterns rather than on patterns
specific to small data points. There are several cases where getting more labeled data could
be a challenge.

There are techniques, such as data augmentation, that can be used to generate more training
data in problems related to computer vision. Data augmentation is a technique where you
can adjust the images slightly by performing different actions such as rotating, cropping,
and generating more data. With enough domain understanding, you can create synthetic
data too if capturing actual data is expensive. There are other ways that can help to avoid
overfitting when you are unable to get more data. Let's look at them.

Reducing the size of the network
The size of the network in general refers to the number of layers or the number of weight
parameters used in a network. In the example of image classification that we saw in the last
chapter, we used a ResNet model that has 18 blocks consisting of different layers inside it.
The torchvision library in PyTorch comes with ResNet models of different sizes starting
from 18 blocks and going up to 152 blocks. Say, for example, if we are using a ResNet block
with 152 blocks and the model is overfitting, then we can try using a ResNet with 101 blocks
or 50 blocks. In the custom architectures we build, we can simply remove some
intermediate linear layers, thus preventing our PyTorch models from memorizing the
training dataset. Let's look at an example code snippet that demonstrates what it means
exactly to reduce the network size:

Fundamentals of Machine Learning Chapter 4

[75]

The preceding architecture has three linear layers, and let's say it overfits our training data.
So, let's recreate the architecture with reduced capacity:

The preceding architecture has only two linear layers, thus reducing the capacity and, in
turn, potentially avoiding overfitting the training dataset.

Applying weight regularization
One of the key principles that helps to solve the problem of overfitting or generalization is
building simpler models. One technique for building simpler models is to reduce the
complexity of the architecture by reducing its size. The other important thing is ensuring
that the weights of the network do not take larger values. Regularization provides
constraints on the network by penalizing the model when the weights of the model are
larger. Whenever the model uses larger weights, the regularization kicks in and increases
the loss value, thus penalizing the model. There are two types of regularization possible.
They are:

L1 regularization: The sum of absolute values of weight coefficients are added to
the cost. It is often referred to as the L1 norm of the weights.
L2 regularization: The sum of squares of all weight coefficients are added to the
cost. It is often referred to as the L2 norm of the weights.

PyTorch provides an easy way to use L2 regularization by enabling the
parameter in the optimizer:

Fundamentals of Machine Learning Chapter 4

[76]

By default, the weight decay parameter is set to zero. We can try different values for weight
decay; a small value such as works most of the time.

Dropout
Dropout is one of the most commonly used and the most powerful regularization
techniques used in deep learning. It was developed by Hinton and his students at the
University of Toronto. Dropout is applied to intermediate layers of the model during the
training time. Let's look at an example of how dropout is applied on a linear layer's output
that generates 10 values:

Fundamentals of Machine Learning Chapter 4

[77]

The preceding figure shows what happens when dropout is applied to the linear layer
output with a threshold value of 0.2. It randomly masks or zeros 20% of data, so that the
model will not be dependent on a particular set of weights or patterns, thus overfitting.
Let's look at another example where we apply a dropout with a threshold value of 0.5:

It is often common to use a threshold of dropout values in the range of 0.2 to 0.5, and the
dropout is applied at different layers. Dropouts are used only during the training times, and
during the testing values are scaled down by the factor equal to the dropout. PyTorch
provides dropout as another layer, thus making it easier to use. The following code snippet
shows how to use a dropout layer in PyTorch:

Fundamentals of Machine Learning Chapter 4

[78]

The dropout layer accepts an argument called , which needs to be set to
during the training phase and false during the validation or test phase.

Underfitting
There are times when our model may fail to learn any patterns from our training data,
which will be quite evident when the model fails to perform well even on the dataset it is
trained on. One common thing to try when your model underfits is to acquire more data for
the algorithm to train on. Another approach is to increase the complexity of the model by
increasing the number of layers or by increasing the number of weights or parameters used
by the model. It is often a good practice not to use any of the aforementioned regularization
techniques until we actually overfit the dataset.

Workflow of a machine learning project
In this section, we will formalize a solution framework that can be used to solve any
machine learning problem by bringing together the problem statement, evaluation, feature
engineering, and avoidance of overfitting.

Problem definition and dataset creation
To define the problem, we need two important things; namely, the input data and the type
of problem.

What will be our input data and target labels? For example, say we want to classify
restaurants based on their speciality say Italian, Mexican, Chinese, and Indian food from
the reviews given by the customers. To start working with this kind of problem, we need to
manually hand annotate the training data as one of the possible categories before we can
train the algorithm on it. Data availability is often a challenging factor at this stage.

Identifying the type of problem will help in deciding whether it is a binary classification,
multi-classification, scalar regression (house pricing), or vector regression (bounding
boxes). Sometimes, we may have to use some of the unsupervised techniques such as
clustering and dimensionality reduction. Once the problem type is identified, then it
becomes easier to determine what kind of architecture, loss function, and optimizer should
be used.

Fundamentals of Machine Learning Chapter 4

[79]

Once we have the inputs and have identified the type of the problem, then we can start
building our models with the following assumptions:

There are hidden patterns in the data that can help map the input with the output
The data that we have is sufficient for the model to learn

As machine learning practitioners, we need to understand that we may not be able to build
a model with just some input data and target data. Let's take predicting stock prices as an
example. Let's assume we have features representing historical prices, historical
performance, and competition details, but we may still fail to build a meaningful model that
can predict stock prices, as stock prices could actually be influenced by a variety of other
factors such as the domestic political scenario, international political scenario, natural
factors such as having a good monsoon, and many other factors that may not be
represented by our input data. So, there is no way that any machine learning or deep
learning model would be able to identify patterns. So, based on the domain, carefully pick
features that can be real indicators of the target variable. All these could be reasons for the
models to underfit.

There is another important assumption that machine learning makes. Future or unseen data
will be close to the patterns, as described by the historical data. Sometimes, our models
could fail, as the patterns never existed in the historical data, or the data on which the
model was trained did not cover certain seasonalities or patterns.

Measure of success
The measure of success will be directly determined by your business goal. For example,
when trying to predict when the next machine failure will occur in windmills, we would be
more interested to know how many times the model was able to predict the failures. Using
simple accuracy can be the wrong metric, as most of the time the model will predict
correctly when the machine will not fail, as that is the most common output. Say we get an
accuracy of 98%, and the model was wrong each time in predicting the failure rate such
models may not be of any use in the real world. Choosing the correct measure of success is
crucial for business problems. Often, these kinds of problems have imbalanced datasets.

For balanced classification problems, where all the classes have a likely accuracy, ROC and
Area under the curve (AUC) are common metrics. For imbalanced datasets, we can use
precision and recall. For ranking problems, we can use mean average precision.

Fundamentals of Machine Learning Chapter 4

[80]

Evaluation protocol
Once you decide how you are going to evaluate the current progress, it is important to
decide how you are going to evaluate on your dataset. We can choose from the three
different ways of evaluating our progress:

Holdout validation set: Most commonly used, particularly when you have
enough data
K-fold cross validation: When you have limited data, this strategy helps you to
evaluate on different portions of the data, helping to give us a better view of the
performance
Iterated k-fold validation: When you are looking to go the extra mile with the
performance of the model, this approach will help

Prepare your data
Bring different formats of available data into tensors through vectorization and ensure that
all the features are scaled and normalized.

Baseline model
Create a very simple model that beats the baseline score. In our previous example of dogs
and cats, classification, the baseline accuracy should be 0.5 and our simple model should be
able to beat this score. If we are not able to beat the baseline score, then maybe the input
data does not hold the necessary information required to make the necessary prediction.
Remember not to introduce any regularization or dropouts at this step.

To make the model work, we have to make three important choices:

Choice of last layer: For a regression, it should be a linear layer generating a
scalar value as output. For a vector regression problem, it would be the same
linear layer generating more than one scalar output. For a bounding box, it
outputs four values. For a binary classification, it is often common to use sigmoid,
and for multi-class classification it is softmax.
Choice of loss function: The type of the problem will help you in deciding the
loss function. For a regression problem, such as predicting house prices, we use
the mean squared error, and for classification problems we use categorical cross
entropy.

Fundamentals of Machine Learning Chapter 4

[81]

Optimization: Choosing the right optimization algorithm and some of its hyper
parameters is quite tricky, and we can find them by experimenting with different
ones. For most of the use cases, an Adam or RMSprop optimization algorithm
works better. We will cover some of the tricks that can be used for learning rate
selection.

Let's summarize what kind of loss function and activation function we would use for the
last layer of the network in our deep learning algorithms:

Problem type Activation function Loss function

Binary classification Sigmoid activation

Multi-class classification Softmax activation

Multi-label classification Sigmoid activation

Regression None MSE

Vector regression None MSE

Large model enough to overfit
Once you have a model that has enough capacity to beat your baseline score, increase your
baseline capacity. A few simple tricks to increase the capacity of your architecture are as
follows:

Add more layers to your existing architecture
Add more weights to the existing layers
Train it for more epochs

We generally train the model for an adequate number of epochs. Stop it when the training
accuracy keeps increasing and the validation accuracy stops increasing and probably starts
dropping; that's where the model starts overfitting. Once we reach this stage, we need to
apply regularization techniques.

Fundamentals of Machine Learning Chapter 4

[82]

Remember, the number of layers, size of layers, and number of epochs may change from
problem to problem. A smaller architecture can work for a simple classification problem,
but for a complex problem such as facial recognition, we would need enough
expressiveness in our architecture and the model needs to be trained for more epochs than
for a simple classification problem.

Applying regularization
Finding the best way to regularize the model or algorithm is one of the trickiest parts of the
process, since there are a lot of parameters to be tuned. Some of the parameters that we can
tune to regularize the model are:

Adding dropout: This can be complex as this can be added between different
layers, and finding the best place is usually done through experimentation. The
percentage of dropout to be added is also tricky, as it is purely dependent on the
problem statement we are trying to solve. It is often good practice to start with a
small number such as 0.2.
Trying different architectures: We can try different architectures, activation
functions, numbers of layers, weights, or parameters inside the layers.
Adding L1 or L2 regularization: We can make use of either one of regularization.
Trying different learning rates: There are different techniques that can be used,
which we will discuss in the later sections of the chapter.
Adding more features or more data: This is probably done by acquiring more
data or augmenting data.

We will use our validation dataset to tune all the aforementioned hyper parameters. As we
keep iterating and tweaking the hyper parameters, we may end up with the problem of
data leakage. So, we should ensure that we have holdout data for testing. If the
performance of the model on the test data is good in comparison to the training and
validation, then there is a good chance that our model will perform well on unseen data.
But, if the model fails to perform on the test data but performs on the validation and
training data, then there is a chance that the validation data is not a good representation of
the real-world dataset. In such scenarios, we can end up using k-fold validation or iterated
k-fold validation datasets.

Fundamentals of Machine Learning Chapter 4

[83]

Learning rate picking strategies
Finding the right learning rate for training the model is an ongoing area of research where a
lot of progress has been made. PyTorch provides some of the techniques to tune the
learning rate, and they are provided in the package. We will
explore some of the techniques that PyTorch provides to choose the learning rates
dynamically:

StepLR: This scheduler takes two important parameters. One is step size, which
denotes for what number of epochs the learning rate has to change, and the
second parameter is gamma, which decides how much the learning rate has to be
changed.

For a learning rate of , step size of 10, and gamma size of , for every 10
epochs the learning rate changes by gamma times. That is, for the first 10 epochs,
the learning rate changes to 0.001, and by the end, on the next 10 epochs, it
changes to 0.0001. The following code explains the implementation of :

MultiStepLR: MultiStepLR works similarly to StepLR, except for the fact that the
steps are not at regular intervals; steps are given as lists. For example, it is given
as a list of 10, 15, 30, and for each step value, the learning rate is multiplied by its
gamma value. The following code explains the implementation of :

ExponentialLR: This sets the learning rate to a multiple of the learning rate with
gamma values for each epoch.

Fundamentals of Machine Learning Chapter 4

[84]

ReduceLROnPlateau: This is one of the commonly used learning rate strategies.
In this case, the learning rate changes when a particular metric, such as training
loss, validation loss, or accuracy stagnates. It is a common practice to reduce the
learning rate by two to 10 times its original value. can be
implemented as follows:

Summary
In this chapter, we covered some of the common and best practices that are used in solving
machine learning or deep learning problems. We covered various important steps such as
creating problem statements, choosing the algorithm, beating the baseline score, increasing
the capacity of the model until it overfits the dataset, applying regularization techniques
that can prevent overfitting, increasing the generalization capacity, tuning different
parameters of the model or algorithms, and exploring different learning strategies that can
be used to train deep learning models optimally and faster.

In the next chapter, we will cover different components that are responsible for building
state-of-the-art Convolutional Neural Networks (CNNs). We will also cover transfer
learning, which helps us to train image classifiers when little data is available. We will also
cover techniques that help us to train these algorithms more quickly.

55
Deep Learning for Computer

Vision

In , Diving Deep into Neural Networks, we built an image classifier using a popular
Convolutional Neural Network (CNN) architecture called ResNet, but we used this model
as a black box. In this chapter, we will cover the important building blocks of convolutional
networks. Some of the important topics that we will be covering in this chapter are:

Introduction to neural networks
Building a CNN model from scratch
Creating and exploring a VGG16 model
Calculating pre-convoluted features
Understanding what a CNN model learns
Visualizing weights of the CNN layer

We will explore how we can build an architecture from scratch for solving image
classification problems, which are the most common use cases. We will also learn how to
use transfer learning, which will help us in building image classifiers using a very small
dataset.

Apart from learning how to use CNNs, we will also explore what these convolutional
networks learn.

Deep Learning for Computer Vision Chapter 5

[86]

Introduction to neural networks
In the last few years, CNNs have become popular in the areas of image recognition, object
detection, segmentation, and many other tasks in the field of computer vision. They are also
becoming popular in the field of natural language processing (NLP), though they are not
commonly used yet. The fundamental difference between fully connected layers and
convolution layers is the way the weights are connected to each other in the intermediate
layers. Let's take a look at an image where we depict how fully connected, or linear, layers
work:

One of the biggest challenges of using a linear layer or fully connected layers for computer
vision is that they lose all spatial information, and the complexity in terms of the number of
weights used by fully connected layers is too big. For example, when we represent a 224
pixel image as a flat array, we would end up with 150, 528 (224 x 224 x 3 channels). When
the image is flattened, we lose all the spatial information. Let's look at what a simplified
version of a CNN looks like:

Deep Learning for Computer Vision Chapter 5

[87]

All the convolution layer is doing is applying a window of weights called filters across the
image. Before we try to understand convolutions and other building blocks in detail, let's
build a simple yet powerful image classifier for the dataset. Once we build this, we
will walk through each component of the network. We will break down building our image
classifier into the following steps:

Getting data
Creating a validation dataset
Building our CNN model from scratch
Training and validating the model

MNIST getting data
The dataset contains 60,000 handwritten digits from 0 to 9 for training, and 10,000
images for a test set. The PyTorch library provides us with an dataset,
which downloads the data and provides it in a readily-usable format. Let's use the dataset

 function to pull the dataset to our local machine, and then wrap it around a
. We will use torchvision transformations to convert the data into PyTorch

tensors and do data normalization. The following code takes care of downloading,
wrapping around the and normalizing the data:

Deep Learning for Computer Vision Chapter 5

[88]

So, the previous code provides us with a for the and datasets.
Let's visualize a few images to get an understanding of what we are dealing with. The
following code will help us in visualizing the MNIST images:

Now we can pass the method to visualize our dataset. We will pull a batch of
records from the using the following code, and plot the images:

Deep Learning for Computer Vision Chapter 5

[89]

The images are visualized as follows:

Building a CNN model from scratch
For this example, let's build our own architecture from scratch. Our network architecture
will contain a combination of different layers, namely:

Rectified linear unit (ReLU)
View
Linear layer

Deep Learning for Computer Vision Chapter 5

[90]

Let's look at a pictorial representation of the architecture we are going to implement:

Deep Learning for Computer Vision Chapter 5

[91]

Let's implement this architecture in PyTorch and then walk through what each individual
layer does:

Let's understand in detail what each layer does.

Conv2d
 takes care of applying a convolutional filter on our MNIST images. Let's try to

understand how convolution is applied on a one-dimensional array, and then move to how
a two-dimensional convolution is applied to an image. We will look at the following image,
to which we will apply a of a filter (or kernel) size to a tensor of length :

Deep Learning for Computer Vision Chapter 5

[92]

The bottom boxes represent our input tensor of seven values, and the connected boxes
represent the output after we apply our convolution filter of size three. At the top-right
corner of the image, the three boxes represent the weights and parameters of the
layer. The convolution filter is applied like a window and it moves to the next values by
skipping one value. The number of values to be skipped is called the stride, and is set to

 by default. Let's understand how the output values are being calculated by writing down
the calculation for the first and last outputs:

Output 1 > (-0.5209 x 0.2286) + (-0.0147 x 2.4488) + (-0.4281 x -0.9498)

Output 5 > (-0.5209 x -0.6791) + (-0.0147 x -0.6535) + (-0.4281 x 0.6437)

So, by now, it should be clear what a convolution does. It applies a filter (or kernel), which
is a bunch of weights, on the input by moving it based on the value of the stride. In the
previous example, we are moving our filter one at a time. If the stride value is , then we
would move two points at a time. Let's look at a PyTorch implementation to understand
how it works:

Deep Learning for Computer Vision Chapter 5

[93]

There is another important parameter, called padding, which is often used with
convolutions. If we keenly observe the previous example, we may realize that if the filter is
not applied until the end of the data, when there are not enough elements for the data to
stride, it stops. Padding prevents this by adding zeros to both ends of a tensor. Let's again
look at a one-dimensional example of how padding works:

In the preceding image, we applied a layer with padding and stride .

Let's look at how Conv2d works on an image:

Before we understand how Conv2d works, I would strongly recommend you to check the
amazing blog () where it contains a live demo of
how a convolution works. After you have spent few minutes playing with the demo, read
the next section.

Let's understand what happened in the demo. In the center box of the image, we have two
different sets of numbers; one represented in the boxes and the other beneath the boxes. The
ones represented in the boxes are pixel values, as highlighted by the white box on the left-
hand photo. The numbers denoted beneath the boxes are the filter (or kernel) values that are
being used to sharpen the image. The numbers are handpicked to do a particular job. In this
case, it is sharpening the image. Just like in our previous example, we are doing an element-
to-element multiplication and summing up all the values to generate the value of the pixel
in the right-hand image. The generated value is highlighted by the white box on the right-
hand side of the image.

Deep Learning for Computer Vision Chapter 5

[94]

Though the values in the kernel are handpicked in this example, in CNNs we do not
handpick the values, but rather we initialize them randomly and let the gradient descent
and backpropagation tune the values of the kernels. The learned kernels will be responsible
for identifying different features such as lines, curves, and eyes. Let's look at another image
where we look at it as a matrix of numbers and see how convolution works:

In the preceding screenshot, we assume that the 6 x 6 matrix represents an image and we
apply the convolution filter of size 3 x 3, then we show how the output is generated. To
keep it simple, we are just calculating for the highlighted portion of the matrix. The output
is generated by doing the following calculation:

Output > 0.86 x 0 + -0.92 x 0 + -0.61 x 1 + -0.32 x -1 + -1.69 x -1 +

The other important parameter used in the function is , which
decides the size of the kernel. Some of the commonly used kernel sizes are 1, 3, 5, and 7. The
larger the kernel size, the larger the area that a filter can cover becomes huge, so it is
common to observe filters of 7 or 9 being applied to the input data in the early layers.

Deep Learning for Computer Vision Chapter 5

[95]

Pooling
It is a common practice to add pooling layers after convolution layers, as they reduce the
size of feature maps and the outcomes of convolution layers.

Pooling offers two different features: one is reducing the size of data to process, and the
other is forcing the algorithm to not focus on small changes in the position of an image. For
example, a face-detecting algorithm should be able to detect a face in the picture,
irrespective of the position of the face in the photo.

Let's look at how MaxPool2d works. It also has the same concept of kernel size and strides.
It differs from convolutions as it does not have any weights, and just acts on the data
generated by each filter from the previous layer. If the kernel size is 2 x 2, then it considers
that size in the image and picks the max of that area. Let's look at the following image,
which will make it clear how MaxPool2d works:

Deep Learning for Computer Vision Chapter 5

[96]

The box on the left-hand side contains the values of feature maps. After applying max-
pooling, the output is stored on the right-hand side of the box. Let's look at how the output
is calculated, by writing down the calculation for the values in the first row of the output:

The other commonly used pooling technique is average pooling. The function is
replaced by the function. The following image explains how average pooling
works:

In this example, instead of taking a maximum of four values, we are taking the average four
values. Let's write down the calculation to make it easier to understand:

Deep Learning for Computer Vision Chapter 5

[97]

Nonlinear activation ReLU
It is a common and a best practice to have a nonlinear layer after max-pooling, or after
convolution is applied. Most of the network architectures tend to use ReLU or different
flavors of ReLU. Whatever nonlinear function we choose, it gets applied to each element of
the feature maps. To make it more intuitive, let's look at an example where we apply ReLU
for the same feature map to which we applied max-pooling and average pooling:

View
It is a common practice to use a fully connected, or linear, layer at the end of most networks
for an image classification problem. We are using a two-dimensional convolution that takes
a matrix of numbers as input and outputs another matrix of numbers. To apply a linear
layer, we need to flatten the matrix which is a tensor of two-dimensions to a vector of one-
dimension. The following example will show you how works:

Let's look at the code used in our network that does the same:

Deep Learning for Computer Vision Chapter 5

[98]

As we saw earlier, the method will flatten an n-dimension tensor to a one-dimensional
tensor. In our network, the first dimension is of each image. The input data after batching
will have a dimension of 32 x 1 x 28 x 28, where the first number, 32, will denote that there
are 32 images of size 28 height, 28 width, and 1 channel since it is a black-and-white image.
When we flatten, we do not want to flatten or mix the data for different images. So, the first
argument that we pass to the function will instruct PyTorch to avoid flattening the
data on the first dimension. Let's take a look at how this works in the following image:

In the preceding example, we have data of size 2 x 1 x 2 x 2; after we apply the
function, it converts to a tensor of size 2 x 1 x 4. Let's also look at another example where we
don't mention the - 1:

If we ever forget to mention which dimension to flatten, we may end up with unexpected
results. So be extra careful at this step.

Deep Learning for Computer Vision Chapter 5

[99]

Linear layer
After we convert the data from a two-dimensional tensor to a one-dimensional tensor, we
pass the data through a linear layer, followed by a nonlinear activation layer. In our
architecture, we have two linear layers; one followed by ReLU, and the other followed by a

, which predicts what digit is contained in the given image.

Training the model
Training the model is the same process as for our previous dogs and cats image
classification problems. The following code snippet does the training of our model on the
provided dataset:

Deep Learning for Computer Vision Chapter 5

[100]

This method has different logic for and . There are primarily two
reasons for using different modes:

In mode, dropout removes a percentage of values, which should not
happen in the validation or testing phase
For mode, we calculate gradients and change the model's parameters
value, but backpropagation is not required during the testing or validation
phases

Most of the code in the previous function is self-explanatory, as discussed in previous
chapters. At the end of the function, we return the and of the model for that
particular epoch.

Let's run the model through the preceding function for 20 iterations and plot the and
 of and , to understand how our network performed. The

following code runs the method for the and dataset for iterations:

The following code plots the and :

Deep Learning for Computer Vision Chapter 5

[101]

 The preceding code generates the following graph:

The following code plots the training and test accuracy:

The preceding code generates the following graph:

Deep Learning for Computer Vision Chapter 5

[102]

At the end of the 20th epoch, we achieve a accuracy of 98.9%. We have got our simple
convolutional model working and almost achieving state-of-the-art results. Let's take a look
at what happens when we try the same network architecture on the previously-used

 dataset. We will use the data from our previous chapter, , Building
Blocks of Neural Networks, and architecture from the MNIST example with some minor
changes. Once we train the model, let's evaluate it to understand how well our simple
architecture performs.

Classifying dogs and cats CNN from scratch
We will use the same architecture with a few minor changes, as listed here:

The input dimensions for the first linear layer changes, as the dimensions for our
cats and dogs images are 256, 256
We add another linear layer to give more flexibility for the model to learn

Let's look at the code that implements the network architecture:

Deep Learning for Computer Vision Chapter 5

[103]

We will use the same function which was used for the MNIST example. So, I am
not including the code here. But let's look at the plots generated when the model is trained
for 20 iterations.

Loss of and datasets:

Accuracy for and datasets:

Deep Learning for Computer Vision Chapter 5

[104]

It's clear from the plots that the training loss is decreasing for every iteration, but the
validation loss gets worse. Accuracy also increases during the training, but almost saturates
at 75%. It is a clear example where the model is not generalizing. We will look at another
technique called transfer learning, which helps us in training more accurate models, along
with providing tricks to make the training faster.

Classifying dogs and cats using transfer learning
Transfer learning is the ability to reuse a trained algorithm on a similar dataset without
training it from scratch. We humans do not learn to recognize new images by analyzing
thousands of similar images. We, as humans, just understand the different features that
actually differentiate a particular animal, say a fox from a dog. We do not need to learn
what a fox is from understanding what lines, eyes, and other smaller features are like. So we
will learn how to use a pre-trained model to build state-of-the-art image classifiers with
very little data.

The first few layers of a CNN architecture focus on smaller features, such as how a line or
curve looks. The filters in the later layers of a CNN learn higher-level features, such as eyes
and fingers, and the last few layers learn to identify the exact category. A pre-trained model
is an algorithm that is trained on a similar dataset. Most of the popular algorithms are pre-
trained on the popular dataset to identify 1,000 different categories. Such a pre-
trained model will have filter weights tuned to identify various patterns. So, let's
understand how can we take advantage of these pre-trained weights. We will look into an
algorithm called VGG16, which was one of the earliest algorithms to find success in
ImageNet competitions. Though there are more modern algorithms, this algorithm is still
popular as it is simple to understand and use for transfer learning. Let's take a look at the
architecture of the VGG16 model, and then try to understand the architecture and how we
can use it to train our image classifier:

Deep Learning for Computer Vision Chapter 5

[105]

Deep Learning for Computer Vision Chapter 5

[106]

The VGG16 architecture contains five VGG blocks. A block is a set of convolution layers, a
nonlinear activation function, and a max-pooling function. All the algorithm parameters are
tuned to achieve state-of-the-art results for classifying 1,000 categories. The algorithm takes
input data in the form of batches, which are normalized by the mean and standard
deviation of the dataset. In transfer learning, we try to capture what the
algorithm learns by freezing the learned parameters of most of the layers of the architecture.
It is often a common practice to fine-tune only the last layers of the network. In this
example, let's train only the last few linear layers and leave the convolutional layers intact,
as the features learned by the convolutional features are mostly used for all kinds of image
problems where the images share similar properties. Let's train a VGG16 model using
transfer learning to classify dogs and cats. Let's walk through the different steps required to
implement this.

Creating and exploring a VGG16 model
PyTorch provides a set of trained models in its library. Most of them accept
an argument called when , which downloads the weights tuned for the
ImageNet classification problem. Let's look at the code snippet that creates a VGG16 model:

Now we have our VGG16 model with all the pre-trained weights ready to be used. When
the code is run for the first time, it could take several minutes, depending on your internet
speed. The size of the weights could be around 500 MB. We can take a quick look at the
VGG16 model by printing it. Understanding how these networks are implemented turns
out to be very useful when we use modern architectures. Let's take a look at the model:

Deep Learning for Computer Vision Chapter 5

[107]

The model summary contains two sequential model and . The
 model has the layers that we are going to freeze.

Deep Learning for Computer Vision Chapter 5

[108]

Freezing the layers
Let's freeze all the layers of the model, which contains the convolutional block.
Freezing the weights in the layers will prevent the weights of these convolutional blocks. As
the weights of the model are trained to recognize a lot of important features, our algorithm
would be able to do the same from the very first iteration. The ability to use models
weights, which were initially trained for a different use case, is called transfer learning.
Now let's look at how we can freeze the weights, or parameters, of layers:

This code prevents the optimizer from updating the weights.

Fine-tuning VGG16
The VGG16 model is trained to classify 1,000 categories, but not trained to classify dogs and
cats. So, we need to change the output features of the last layer to from . The
following code snippet does it:

The gives access to all the layers inside the sequential model, and the
sixth element will contain the last layer. When we train the VGG16 model, we only need the
classifier parameters to be trained. So, we pass only the to the
optimizer as follows:

Training the VGG16 model
We have created the model and optimizer. Since we are using the dataset,
we can use the same data loaders and the function to train our model. Remember,
when we train the model, only the parameters inside the classifier change. The following
code snippet will train the model for epochs, reaching a validation accuracy of 98.45%:

Deep Learning for Computer Vision Chapter 5

[109]

Let's visualize the training and validation loss:

Let's visualize the training and validation accuracy:

Deep Learning for Computer Vision Chapter 5

[110]

We can apply a couple of tricks, such as data augmentation and playing with different
values of the dropout to improve the model's generalization capabilities. The following
code snippet changes the dropout, value in the classifier module of VGG to from
and trains the model:

Training this for a few epochs gave me a slight improvement; you can try playing with
different dropout values. Another important trick to improve model generalization is to
add more data or do data augmentation. We will do data augmentation, by randomly
flipping the image horizontally or rotating the image by a small angle. The
transforms provide different functionalities for doing data augmentation and they do it
dynamically, changing for every epoch. We implement data augmentation using the
following code:

Deep Learning for Computer Vision Chapter 5

[111]

The output of the preceding code is generated as follows:

Training the model with augmented data improved the model accuracy by 0.1% by running
just two epochs; we can run it for a few more epochs to improve further. If you have been
training these models while reading the book, you will have realized that training each
epoch could take more than a couple of minutes, depending on the GPU you are running.
Let's look at a technique where we can train each epoch in a few seconds.

Calculating pre-convoluted features
When we freeze the convolution layers and the train model, the input to the fully connected
layers, or dense layers, () is always the same. To understand better, let's
treat the convolution block, in our example the block, as a function that has
learned weights and does not change during training. So, calculating the convolution
features and storing them will help us to improve the training speed. The time to train the
model decreases, as we calculate these features only once instead of calculating for each
epoch. Let's visually understand and implement the same:

Deep Learning for Computer Vision Chapter 5

[112]

The first box depicts how training is done in general, which could be slow, as we calculate
the convolutional features for every epoch, though the values do not change. In the bottom
box, we calculate the convolutional features once and train only the linear layers. To
calculate the pre-convoluted features, we will pass all the training data through the
convolution blocks and store them. To perform this, we need to select the convolution
blocks of the VGG model. Fortunately, the PyTorch implementation of VGG16 has two
sequential models, so just picking the first sequential model's features is enough. The
following code does that:

Deep Learning for Computer Vision Chapter 5

[113]

In the previous code, the method takes in the dataset and model and
returns the convoluted features along with the labels associated with it. The rest of the code
is similar to what we have used in the other examples for creating data loaders and
datasets.

Once we have the convolutional features for the and sets, let's create a
PyTorch dataset and classes, which will ease up our training process. The
following code creates the and for our convolution features:

Deep Learning for Computer Vision Chapter 5

[114]

As we have our new data loaders that generate batches of convoluted features along with
the labels, we can use the same function that we have been using in the other
examples. Now we will use as the model for creating the and

 methods. The following code trains the classifier module to identify dogs and cats. On a
Titan X GPU, each epoch takes less than five seconds, which would otherwise take a few
minutes:

Understanding what a CNN model learns
Deep learning models are often said to be not interpretable. But there are different
techniques that are being explored to interpret what happens inside these models. For
images, the features learned by convents are interpretable. We will explore two popular
techniques to understand convents.

Visualizing outputs from intermediate layers
Visualizing the outputs from intermediate layers will help us in understanding how the
input image is being transformed across different layers. Often, the output from each layer
is called an activation. To do this, we should extract output from intermediate layers, which
can be done in different ways. PyTorch provides a method called

, which allows us to pass a function which can extract outputs of
a particular layer.

Deep Learning for Computer Vision Chapter 5

[115]

By default, PyTorch models only store the output of the last layer, to use memory optimally.
So, before we inspect what the activations from the intermediate layers look like, let's
understand how to extract outputs from the model. Let's look at the following code snippet,
which extracts, and we will walk through it to understand what happens:

We start with the creation of a pre-trained VGG model, from which we extract the outputs
of a particular layer. The class instructs PyTorch to store the output of
a layer to the variable. Let's walk through each function inside the

 class.

The function takes a model and the layer number for which the outputs need to be
extracted as arguments. We call the method on the layer and
pass in a function. PyTorch, when doing a forward pass that is, when the images are
passed through the layers calls the function that is passed to the

 method. This method returns a handle, which can be used to
deregister the function that is passed to the method.

Deep Learning for Computer Vision Chapter 5

[116]

The method passes three values to the function that we pass to
it. The parameter allows us access to the layer itself. The second parameter is

, which refers to data that is flowing through the layer. The third parameter is
, which allows access to the transformed inputs, or activation, of the layer. We store

the output to the features variable in the class.

The third function takes the from the function and deregisters the function.
Now we can pass the model and the layer number for which we are looking for activations.
Let's look at the activations created for the following image for different layers:

Deep Learning for Computer Vision Chapter 5

[117]

Let's visualize some of the activations created by the first convolution layer and the code
used for it:

Let's visualize some of the activations created by the fifth convolution layer:

Deep Learning for Computer Vision Chapter 5

[118]

Let's look at the last CNN layer:

From looking at what different layers generate, we can see that the early layers detect lines
and edges, and the last layers tend to learn higher-level features and are less interpretable.
Before we move on to visualizing weights, let's see how the features maps or
activations represents itself after the ReLU layer. So, let's visualize the outputs of the second
layer.

If you take a quick look at the fifth image in the second row of the preceding image, it looks
like the filter is detecting the eyes in the image. When the models do not perform, these
tricks to visualize can help us understand why the model may not be working.

Deep Learning for Computer Vision Chapter 5

[119]

Visualizing weights of the CNN layer
Getting model weights for a particular layer is straightforward. All the model weights can
be accessed through the function. The function returns a
dictionary, with keys as its layers and weights as its values. The following code
demonstrates how to pull weights for a particular layer and visualize them:

The preceding code provides us with the following output:

Each box represents weights of a filter that is of size 3 x 3. Each filter is trained to identify
certain patterns in the images.

Summary
In this chapter, we learned how to build an image classifier using convents, and also how to
use a pre-trained model. We covered tricks on how to speed up the process of training by
using these pre-convoluted features. Also, we understood different techniques that can be
used to understand what goes on inside a CNN.

In the next chapter, we will learn how to handle sequential data using recurrent neural
networks.

66
Deep Learning with Sequence

Data and Text
In the last chapter, we covered how to handle spatial data using Convolution Neural
Networks (CNNs) and also built image classifiers. In this chapter, we will cover the
following topics:

Different representations of text data that are useful for building deep learning
models
Understanding recurrent neural networks (RNNs) and different
implementations of RNNs, such as Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU), which power most of the deep learning
models for text and sequential data
Using one-dimensional convolutions for sequential data

Some of the applications that can be built using RNNs are:

Document classifiers: Identifying the sentiment of a tweet or review, classifying
news articles
Sequence-to-sequence learning: For tasks such as language translations,
converting English to French
Time-series forecasting: Predicting the sales of a store given details about
previous days' store details

Deep Learning with Sequence Data and Text Chapter 6

[121]

Working with text data
Text is one of the commonly used sequential data types. Text data can be seen as either
a sequence of characters or a sequence of words. It is common to see text as a sequence of
words for most problems. Deep learning sequential models such as RNN and its variants
are able to learn important patterns from text data that can solve problems in areas such as:

Natural language understanding
Document classification
Sentiment classification

These sequential models also act as important building blocks for various systems, such as
question and answering (QA) systems.

Though these models are highly useful in building these applications, they do not have an
understanding of human language, due to its inherent complexities. These sequential
models are able to successfully find useful patterns that are then used for performing
different tasks. Applying deep learning to text is a fast-growing field, and a lot of new
techniques arrive every month. We will cover the fundamental components that power
most of the modern-day deep learning applications.

Deep learning models, like any other machine learning model, do not understand text, so
we need to convert text into numerical representation. The process of converting text into
numerical representation is called vectorization and can be done in different ways, as
outlined here:

Convert text into words and represent each word as a vector
Convert text into characters and represent each character as a vector
Create n-gram of words and represent them as vectors

Text data can be broken down into one of these representations. Each smaller unit of text is
called a token, and the process of breaking text into tokens is called tokenization. There are
a lot of powerful libraries available in Python that can help us in tokenization. Once we
convert the text data into tokens, we then need to map each token to a vector. One-hot
encoding and word embedding are the two most popular approaches for mapping tokens
to vectors. The following diagram summarizes the steps for converting text into their vector
representations:

Deep Learning with Sequence Data and Text Chapter 6

[122]

Let's look in more detail at tokenization, n-gram representation, and vectorization.

Tokenization
Given a sentence, splitting it into either characters or words is called tokenization. There
are libraries, such as spaCy, that offer complex solutions to tokenization. Let's use simple
Python functions such as and to convert the text into tokens.

To demonstrate how tokenization works on characters and words, let's consider a small
review of the movie Thor: Ragnarok. We will work with the following text:

The action scenes were top notch in this movie. Thor has never been this epic in the MCU.
He does some pretty epic sh*t in this movie and he is definitely not under-powered
anymore. Thor in unleashed in this, I love that.

Converting text into characters
The Python function takes a string and converts it into a list of individual characters.
This does the job of converting the text into characters. The following code block shows the
code used and the results:

Deep Learning with Sequence Data and Text Chapter 6

[123]

The result is as follows:

This result shows how our simple Python function has converted text into tokens.

Converting text into words
We will use the function available in the Python string object to break the text into
words. The function takes an argument, based on which it splits the text into tokens.
For our example, we will use spaces as the delimiters. The following code block
demonstrates how we can convert text into words using the Python function:

Deep Learning with Sequence Data and Text Chapter 6

[124]

In the preceding code, we did not use any separator; by default, the function splits
on white spaces.

N-gram representation
We have seen how text can be represented as characters and words. Sometimes it is useful
to look at two, three, or more words together. N-grams are groups of words extracted from
given text. In an n-gram, n represents the number of words that can be used together. Let's
look at an example of what a bigram (n=2) looks like. We used the Python package to
generate a bigram for . The following code block shows the result of the
bigram and the code used to generate it:

The function accepts a sequence of words as its first argument and the number of
words to be grouped as the second argument. The following code block shows how a
trigram representation would look, and the code used for it:

Deep Learning with Sequence Data and Text Chapter 6

[125]

The only thing that changed in the preceding code is the n-value, the second argument to
the function.

Many supervised machine learning models, for example, Naive Bayes, use n-grams to
improve their feature space. n-grams are also used for spelling correction and text-
summarization tasks.

One challenge with n-gram representation is that it loses the sequential nature of text. It is
often used with shallow machine learning models. This technique is rarely used in deep
learning, as architectures such as RNN and Conv1D learn these representations
automatically.

Vectorization
There are two popular approaches to mapping the generated tokens to vectors of numbers,
called one-hot encoding and word embedding. Let's understand how tokens can be
converted to these vector representations by writing a simple Python program. We will also
discuss the various pros and cons of each method.

One-hot encoding
In one-hot encoding, each token is represented by a vector of length N, where N is the size
of the vocabulary. The vocabulary is the total number of unique words in the document.
Let's take a simple sentence and observe how each token would be represented as one-hot
encoded vectors. The following is the sentence and its associated token representation:

An apple a day keeps doctor away said the doctor.

One-hot encoding for the preceding sentence can be represented into a tabular format as
follows:

An 100000000

apple 010000000

Deep Learning with Sequence Data and Text Chapter 6

[126]

a 001000000

day 000100000

keeps 000010000

doctor 000001000

away 000000100

said 000000010

the 000000001

This table describes the tokens and their one-hot encoded representation. The vector length
is 9, as there are nine unique words in the sentence. A lot of machine learning libraries have
eased the process of creating one-hot encoding variables. We will write our own
implementation to make it easier to understand, and we can use the same implementation
to build other features required for later examples. The following code contains
a class, which contains functionality to create a dictionary of unique words
along with a function to return a one-hot encoded vector for a particular word. Let's take a
look at the code and then walk through each functionality:

The preceding code provides three important functionalities:

The initialization function, , creates a dictionary, which will
store all unique words along with the index. The list stores all the
unique words, and the variable contains the total number of unique
words in our documents.

Deep Learning with Sequence Data and Text Chapter 6

[127]

The function takes a word and adds it
to and , and increases the length of the vocabulary, provided
the word is unique.
The function takes a word and returns a vector of length N
with zeros throughout, except at the index of the word. If the index of the passed
word is two, then the value of the vector at index two will be one, and all the
remaining values will be zeros.

As we have defined our class, let's use it on our data. The
following code demonstrates how the is built and how we can call our

 function:

The output of the preceding code is as follows:

One-hot encoding for the word is as follows:

One of the challenges with one-hot representation is that the data is too sparse, and the size
of the vector quickly grows as the number of unique words in the vocabulary increases,
which is considered to be a limitation, and hence it is rarely used with deep learning.

Deep Learning with Sequence Data and Text Chapter 6

[128]

Word embedding
Word embedding is a very popular way of representing text data in problems that are
solved by deep learning algorithms. Word embedding provides a dense representation of a
word filled with floating numbers. The vector dimension varies according to the vocabulary
size. It is common to use a word embedding of dimension size 50, 100, 256, 300, and
sometimes 1,000. The dimension size is a hyper-parameter that we need to play with during
the training phase.

If we are trying to represent a vocabulary of size 20,000 in one-hot representation then we
will end up with 20,000 x 20,000 numbers, most of which will be zero. The same vocabulary
can be represented in word embedding as 20,000 x dimension size, where the dimension
size could be 10, 50, 300, and so on.

One way to create word embeddings is to start with dense vectors for each token containing
random numbers, and then train a model such as a document classifier or sentiment
classifier. The floating point numbers, which represent the tokens, will get adjusted in a
way such that semantically closer words will have similar representation. To understand it,
let's look at the following figure, where we plotted the word embedding vectors on a two-
dimensional plot of five movies:

Deep Learning with Sequence Data and Text Chapter 6

[129]

The preceding image shows how the dense vectors are tuned in order to have smaller
distances for words that are semantically similar. Since movie titles such as Superman,
Thor, and Batman are action movies based on comics, the embedding for such words is
closer, whereas the embedding for the movie Titanic is far from the action movies and
closer to the movie title Notebook, since they are romantic movies.

Learning word embedding may not be feasible when you have too little data, and in such
cases we can use word embeddings that are trained by some other machine learning
algorithm. An embedding generated from another task is called a pretrained word
embedding. We will learn how to build our own word embeddings and use pretrained
word embeddings.

Training word embedding by building a
sentiment classifier
In the last section, we briefly learned about word embedding without implementing it. In
this section, we will download a dataset called , which contains reviews, and build a
sentiment classifier which calculates whether a review's sentiment is positive, negative, or
unknown. In the process of building, we will also train word embedding for the words
present in the dataset. We will use a library called that makes a lot of
processes such as downloading, text vectorization, and batching much easier. Training a
sentiment classifier will involve the following steps:

Downloading IMDB data and performing text tokenization1.
Building a vocabulary2.
Generating batches of vectors3.
Creating a network model with embeddings4.
Training the model5.

Deep Learning with Sequence Data and Text Chapter 6

[130]

Downloading IMDB data and performing text
tokenization
For applications related to computer vision, we used the library, which
provides us with a lot of utility functions, helping to building computer vision applications.
In the same way, there is a library called , part of PyTorch, which is built to
work with PyTorch and eases a lot of activities related to natural language processing
(NLP) by providing different data loaders and abstractions for text. At the time of writing,

 does not come with PyTorch installation and requires a separate installation.
You can run the following code in the command line of your machine to get
installed:

pip install torchtext

Once it is installed, we will be able to use it. Torchtext provides two important modules
called and .

We can download the dataset from the following link:

torchtext.data
The instance defines a class called , which helps us to define how
the data has to be read and tokenized. Let's look at the following example, which we will
use for preparing our dataset:

In the preceding code, we define two objects, one for actual text and another for the
label data. For actual text, we expect to lowercase all the text, tokenize the text,
and trim it to a maximum length of . If we are building the application for a production
environment, we may fix the length to a much larger number. But, for the toy example it
works well. The constructor also accepts another argument called tokenize, which
by default uses the function. We can also specify spaCy as the argument, or any
other tokenizer. For our example we will stick with .

Deep Learning with Sequence Data and Text Chapter 6

[131]

torchtext.datasets
The instance provide wrappers for using different datasets like
IMDB, TREC (question classification), language modeling (WikiText-2), and a few other
datasets. We will use to download the dataset and split it into

 and datasets. The following code does that, and when you run it for the first
time it could take several minutes, depending on your broadband connection, as it
downloads the datasets from the internet:

The previous dataset's class abstracts away all the complexity involved in
downloading, tokenizing, and splitting the database into and datasets.

 contains a dictionary where is the key and the value . Let's look
at and each element of contains:

We can see from these results that a single element contains a field, , along with all the
tokens representing the , and a field that contains the label of the text. Now we
have the dataset ready for batching.

Deep Learning with Sequence Data and Text Chapter 6

[132]

Building vocabulary
When we created one-hot encoding for , we created a dictionary,
which is referred to as the vocabulary since it contains all the details of the unique words in
the documents. The instance makes that easier for us. Once the data is loaded,
we can call and pass the necessary arguments that will take care of building
the vocabulary for the data. The following code shows how the vocabulary is built:

In the preceding code, we pass in the object on which we need to build the
vocabulary, and we also ask it to initialize vectors with pretrained embeddings of
dimensions . The object just downloads and creates the dimension that
will be used later, when we train the sentiment classifier using pretrained weights. The

 instance limits the number of words in the vocabulary, and removes
any word which has not occurred more than ten times, where is configurable.

Once the vocabulary is built, we can obtain different values such as frequency, word index,
and the vector representation for each word. The following code demonstrates how to
access these values:

The following code demonstrates how to access the results:

Deep Learning with Sequence Data and Text Chapter 6

[133]

The gives access to a dictionary containing words and their indexes.

Generate batches of vectors
Torchtext provides , which helps in batching all the text and replacing the
words with the index number of the words. The instance comes with a
lot of useful parameters like , (GPU or CPU), and (whether
data has to be shuffled). The following code demonstrates how to create iterators that
generate batches for the and datasets:

The preceding code gives a object for and datasets. The
following code will show how to create a and display the results of the :

Deep Learning with Sequence Data and Text Chapter 6

[134]

From the results in the preceding code block, we can see how the text data is converted into
a matrix of size (*), which is () .

Creating a network model with embedding
We discussed word embeddings briefly earlier. In this section, we create word embeddings
as part of our network architecture and train the entire model to predict the sentiment of
each review. At the end of the training, we will have a sentiment classifier model and also
the word embeddings for the datasets. The following code demonstrates how to create
a network architecture to predict the sentiment using word embeddings:

Deep Learning with Sequence Data and Text Chapter 6

[135]

In the preceding code, creates the model for sentiment classification. Inside the
 function, we initialize an object of the class, which takes two

arguments, namely, the size of the vocabulary and the dimensions that we wish to create for
each word. As we have limited the number of unique words, the vocabulary size will be
10,000 and we can start with a small embedding size of . For running the program
quickly, a small embedding size is useful, but when you are trying to build applications for
production systems, use embeddings of a large size. We also have a linear layer that maps
the word embeddings to the category (positive, negative, or unknown).

The function determines how the input data is processed. For a batch size of 32
and sentences of a maximum length of 20 words, we will have inputs of the shape 32 x 20.
The first embedding layer acts as a lookup table, replacing each word with the
corresponding embedding vector. For an embedding dimension of 10, the output becomes
32 x 20 x 10 as each word is replaced with its corresponding embedding. The
function will flatten the result from the embedding layer. The first argument passed to
will keep that dimension intact. In our case, we do not want to combine data from different
batches, so we preserve the first dimension and flatten the rest of the values in the tensor.
After the function is applied, the tensor shape changes to 32 x 200. A dense layer maps
the flattened embeddings to the number of categories. Once the network is defined, we can
train the network as usual.

Remember that in this network, we lose the sequential nature of the text
and we just use them as a bag of words.

Training the model
Training the model is very similar to what we saw for building image classifiers, so we will
be using the same functions. We pass batches of data through the model, calculate the
outputs and losses, and then optimize the model weights, which includes the embedding
weights. The following code does this:

Deep Learning with Sequence Data and Text Chapter 6

[136]

In the preceding code, we call the method by passing the object that
we created for batching the data. The iterator, by default, does not stop generating batches,
so we have to set the variable of the object to . If we don't
set the variable to then the function will run indefinitely. Training the
model for around 10 epochs gives a validation accuracy of approximately 70%.

Deep Learning with Sequence Data and Text Chapter 6

[137]

Using pretrained word embeddings
Pretrained word embeddings would be useful when we are working in specific domains,
such as medicine and manufacturing, where we have lot of data to train the embeddings.
When we have little data on which we cannot meaningfully train the embeddings, we can
use embeddings, which are trained on different data corpuses such as Wikipedia, Google
News and Twitter tweets. A lot of teams have open source word embeddings trained using
different approaches. In this section, we will explore how makes it easier to use
different word embeddings, and how to use them in our PyTorch models. It is similar to
transfer learning, which we use in computer vision applications. Typically, using pretrained
embedding would involve the following steps:

Downloading the embeddings
Loading the embeddings in the model
Freezing the embedding layer weights

Let's explore in detail how each step is implemented.

Downloading the embeddings
The library abstracts away a lot of complexity involved in downloading the
embeddings and mapping them to the right word. Torchtext provides three classes, namely

, , , in the module, that ease the process of downloading
embeddings, and mapping them to our vocabulary. Each of these classes provides different
embeddings trained on different datasets and using different techniques. Let's look at some
of the different embeddings provided:

Deep Learning with Sequence Data and Text Chapter 6

[138]

The method of the object takes in an argument for the embeddings.
The following code explains how we download the embeddings:

The value to the argument vector denotes what embedding class is to be used. The
and arguments determine on what embeddings can be used. We can easily access the
embeddings from the object. The following code demonstrates it, along with a view
of how the results will look:

Now we have downloaded and mapped the embeddings to our vocabulary. Let's
understand how we can use them with a PyTorch model.

Loading the embeddings in the model
The variable returns a torch tensor of shape
containing the pretrained embeddings. We have to store the embeddings to the weights of
our embedding layer. We can assign the weights of the embeddings by accessing the
weights of the embeddings layer as demonstrated by the following code.

Deep Learning with Sequence Data and Text Chapter 6

[139]

 represents the object of our network, and represents the embedding
layer. As we are using the embedding layer with new dimensions, there will be a small
change in the input to the linear layer that comes after the embedding layer. The following
code has the new architecture, which is similar to the previously-used architecture where
we trained our embeddings:

Once the embeddings are loaded, we have to ensure that, during training, we do not change
the embedding weights. Let's discuss how to achieve that.

Freeze the embedding layer weights
It is a two-step process to tell PyTorch not to change the weights of the embedding layer:

Set the attribute to , which instructs PyTorch that it does1.
not need gradients for these weights.
Remove the passing of the embedding layer parameters to the optimizer. If this2.
step is not done, then the optimizer throws an error, as it expects all the
parameters to have gradients.

The following code demonstrates how easy it is to freeze the embedding layer weights and
instruct the optimizer not to use those parameters:

We generally pass all the model parameters to the optimizer, but in the previous code we
pass parameters which have to be .

Deep Learning with Sequence Data and Text Chapter 6

[140]

We can train the model using this exact code and should achieve similar accuracy. All these
model architectures fail to take advantage of the sequential nature of the text. In the next
section, we explore two popular techniques, namely RNN and Conv1D, that take advantage
of the sequential nature of the data.

Recursive neural networks
RNNs are among the most powerful models that enable us to take on applications such as
classification, labeling on sequential data, generating sequences of text (such as with the
SwiftKey Keyboard app which predicts the next word), and converting one sequence to
another such as translating a language, say, from French to English. Most of the model
architectures such as feedforward neural networks do not take advantage of the sequential
nature of data. For example, we need the data to present the features of each example in a
vector, say all the tokens that represent a sentence, paragraph, or documents. Feedforward
networks are designed just to look at all the features once and map them to output. Let's
look at a text example which shows why the order, or sequential nature, is important of
text. I had cleaned my car and I had my car cleaned are two English sentences with the same set
of words, but they mean different things only when we consider the order of the words.

Humans make sense of text data by reading words from left to right and building a
powerful model that kind of understands all the different things the text says. RNN works
slightly similarly, by looking at one word in text at a time. RNN is also a neural network
which has a special layer in it, which loops over the data instead of processing all at once.
As RNNs can process data in sequence, we can use vectors of different lengths and generate
outputs of different lengths. Some of the different representations are provided in the
following image:

Deep Learning with Sequence Data and Text Chapter 6

[141]

The previous image is from one of the famous blogs on RNN (
) , in which the author, Andrej Karpathy, writes about

how to build an RNN from scratch using Python and use it as sequence generator.

Understanding how RNN works with an example
Let's start with an assumption that we have an RNN model already built, and try to
understand what functionality it provides. Once we understand what an RNN does, then
let's explore what happens inside an RNN.

Let's consider the Thor review as input to the RNN model. The example text we are looking
at is the action scenes were top notch in this movie.... . We first start by passing the first
word, the, to our model; the model generates two different things, a State Vector and an
Output vector. The state vector is passed to the model when it processes the next word in
the review, and a new state vector is generated. We just consider the Output of the model
generated during the last sequence. The following figure summarizes it:

Deep Learning with Sequence Data and Text Chapter 6

[142]

The preceding figure demonstrates the following:

How RNN works by unfolding it and the image
How the state is recursively passed to the same model

By now you will have an idea of what RNN does, but not how it works. Before we get into
how it works, let's look at a code snippet which showcases in more detail what we have
learnt. We will still view RNN as a black box:

In the preceding code, the variable represents the state vector, sometimes called
hidden state. By now we should have an idea of how RNN is used. Now, let's look at the
code that implements RNN and understand what happens inside the RNN. The following
code contains the class:

Except for the word in the preceding code, everything else would sound pretty similar
to what we have used in the previous chapters, as PyTorch hides a lot of complexity of
backpropagation. Let's walk through the function and the function to
understand what is happening.

Deep Learning with Sequence Data and Text Chapter 6

[143]

The function initializes two linear layers, one for calculating the output and the
other for calculating the state or hidden vector.

The function combines the vector and the vector and passes it
through the two linear layers, which generates an output vector and a hidden state. For the

 layer, we apply a function.

The function helps in creating hidden vectors with no state for calling RNN
the very first time. Let's take a visual look into what the class does in the following
figure:

The preceding figure shows how an RNN works.

The concepts of RNN are sometimes tricky to understand when you meet
them for the first time, so I would strongly recommend some of the
amazing blogs provided in the following
links:
and

In the next section, we will learn how to use a variant of RNN called LSTM to build a
sentiment classifier on the dataset.

Deep Learning with Sequence Data and Text Chapter 6

[144]

LSTM
RNNs are quite popular in building real-world applications like language translation, text
classification and many more sequential problems, but in reality, we rarely would use a
vanilla version of RNN which we saw in the previous section. The vanilla version of RNN
has problems like vanishing gradients and gradient explosion when dealing with large
sequences. In most of the real-world problems, variants of RNN such as LSTM or GRU are
used, which solve the limitations of plain RNN and also have the ability to handle
sequential data better. We will try to understand what happens in LSTM, and build a
network based on LSTM to solve the text classification problem on the datasets.

Long-term dependency
RNNs, in theory, should learn all the dependency required from the historical data to build
a context of what happens next. Say, for example, we are trying to predict the last word in
the sentence the clouds are in the sky. RNN would be able to predict it, as the information
(clouds) is just a few words behind. Let's take another long paragraph where the
dependency need not be that close, and we want to predict the last word in it. The sentence
looks like I am born in Chennai a city in Tamilnadu. Did schooling in different states of India and I
speak... . The vanilla version of RNN, in practice, finds it difficult to remember the contexts
that happened in the earlier parts of sequences. LSTMs and other different variants of RNN
solve this problem by adding different neural networks inside the LSTM which later
decides how much, or what data can be remembered.

LSTM networks
LSTMs are a special kind of RNN, capable of learning long-term dependency. They were
introduced in 1997 and got popular in the last few years with advancements in available
data and hardware. They work tremendously well on a large variety of problems and are
widely used.

LSTMs are designed to avoid long-term dependency problems by having a design by which
it is natural to remember information for a long period of time. In RNNs, we saw how they
repeat themselves over each element of the sequence. In standard RNNs, the repeating
module will have a simple structure like a single linear layer.

Deep Learning with Sequence Data and Text Chapter 6

[145]

The following figure shows how a simple RNN repeats itself:

Inside LSTM, instead of using a simple linear layer we have smaller networks inside the
LSTM which does an independent job. The following diagram showcases what happens
inside an LSTM:

Deep Learning with Sequence Data and Text Chapter 6

[146]

Each of the small rectangular (yellow) boxes in the second box in the preceding diagram
represents a PyTorch layer, the circles represent an element matrix or vector addition, and
the merging lines represent that two vectors are being concatenated. The good part is, we
need not implement all of this manually. Most of the modern deep learning frameworks
provide an abstraction which will take care of what happens inside an LSTM. PyTorch
provides abstraction of all the functionality inside layer, which we can use like
any other layer. The most important thing in the LSTM is the cell state that passes through
all the iterations, represented by the horizontal line across the cells in the preceding
diagram. Multiple networks inside LSTM control what information travels across the cell
state. The first step in LSTM (a small network represented by the symbol) is to decide
what information is going to be thrown away from the cell state. This network is called
forget gate and has a sigmoid as an activation function, which outputs values between 0
and 1 for each element in the cell state.The network (PyTorch layer) is represented using the
following formula:

The values from the network decide which values are to be held in the cell state and which
are to be thrown away. The next step is to decide what information we are going to add to
the cell state. This has two parts; a sigmoid layer, called input gate, which decides what
values to be updated; and a tanh layer, which creates new values to be added to the cell
state. The mathematical representation looks like this:

In the next step, we combine the two values generated by the input gate and tanh. Now we
can update the cell state, by doing an element-wise multiplication between the forget gate
and the sum of the product of it and Ct, as represented by the following formula:

Finally, we need to decide on the output, which will be a filtered version of the cell state.
There are different versions of LSTM available and most of them work on similar principles.
As developers or data scientists, we rarely need to worry about what goes on inside LSTM.
If you want to learn more about them, go through the following blog links, which cover a
lot of theory in a very intuitive way.

Deep Learning with Sequence Data and Text Chapter 6

[147]

Look at Christopher Olah's amazing blog on LSTM (
), and another blog from Brandon Rohrer (

) where he explains LSTM in a nice video.

Since we understand LSTM, let's implement a PyTorch network which we can use to build a
sentiment classifier. As usual, we will follow these steps for creating the classifier:

Preparing the data1.
Creating the batches2.
Creating the network3.
Training the model4.

Preparing the data
We use the same torchtext for downloading, tokenizing and building vocabulary for the

 dataset. When creating the object, we leave the argument
at . RNN networks expect the data to be in the form of ,

 and features. The following is used for preparing the dataset:

Creating batches
We use the torchtext for creating batches, and the size of the batches will
be sequence length and batches. For our case, the size will be [,], where 200 is the
sequence length and 32 is the batch size.

The following is the code used for batching:

Deep Learning with Sequence Data and Text Chapter 6

[148]

Creating the network
Let's look at the code and then walk through the code. You may be surprised at how similar
the code looks:

The method creates an embedding layer of the size of the vocabulary and
. It also creates an LSTM and a linear layer. The last layer is a

layer for converting the results from the linear layer to probabilities.

In the function, we pass the input data of size [,], which gets passed
through the embedding layer and each token in the batch gets replaced by embedding and
the size turns to [200, 32, 100], where 100 is the embedding dimensions. The LSTM layer
takes the output of the embedding layer along with two hidden variables. The hidden
variables should be of the same type of the embeddings output, and their size should be
[, ,]. The LSTM processes the data in a sequence
and generates the output of the shape [, ,],
where each sequence index represents the output of that sequence. In this case, we just take
the output of the last sequence, which is of shape [,], and pass it
on to a linear layer to map it to the output categories. Since the model tends to overfit, add a
dropout layer. You can play with the dropout probabilities.

Deep Learning with Sequence Data and Text Chapter 6

[149]

Training the model
Once the network is created, we can train the model using the same code as seen in the
previous examples. The following is the code for training the model:

Deep Learning with Sequence Data and Text Chapter 6

[150]

Following is the result of the training model:

Training the model for four epochs gave an accuracy of 84%. Training for more epochs
resulted in an overfitted model, as the loss started increasing. We can try some of the
techniques that we tried such as decreasing the hidden dimensions, increasing sequence
length, and training with smaller learning rates to further improve the accuracy.

We will also explore how we can use one-dimensional convolutions for training on
sequence data.

Convolutional network on sequence data
We learned how CNNs solve problems in computer vision by learning features from the
images. In images, CNNs work by convolving across height and width. In the same way,
time can be treated as a convolutional feature. One-dimensional convolutions sometimes
perform better than RNNs and are computationally cheaper. In the last few years,
companies like Facebook have shown success in audio generation and machine translation.
In this section, we will learn how CNNs can be used to build a text classification solution.

Deep Learning with Sequence Data and Text Chapter 6

[151]

Understanding one-dimensional convolution for
sequence data
In , Deep Learning for Computer Vision, we have seen how two-dimensional
weights are learned from the training data. These weights move across the image to
generate different activations. In the same way, one-dimensional convolution activations
are learned during training of our text classifier, where these weights learn patterns by
moving across the data. The following diagram explains how one-dimensional convolutions
will work:

For training a text classifier on the dataset, we will follow the same steps as we
followed for building the classifier using LSTM. The only thing that changes is that we use

, unlike in our LSTM network. So, let's look at the network, the
training code, and its results.

Creating the network
Let's look at the network architecture and then walk through the code:

Deep Learning with Sequence Data and Text Chapter 6

[152]

In the preceding code, instead of an LSTM layer we have a layer and an
 layer. The convolution layer accepts the sequence length as its input

size, and the output size to the hidden size, as the kernel size three. Since we have to change
the dimensions of the linear layer, every time we try to run it with different lengths we use
an which takes input of any size and generates an output of the given
size. So, we can use a linear layer whose size is fixed. The rest of the code is similar to what
we have seen in most of the network architectures.

Training the model
The training steps for the model are the same as the previous example. Let's just look at the
code to call the method and the results it generated:

Deep Learning with Sequence Data and Text Chapter 6

[153]

We ran the model for four epochs, which gave approximately 83% accuracy. Here are the
results of running the model:

Since the started increasing after three epochs, I stopped running the
model. A couple of things that we could try to improve the results are using pretrained
weights, adding another convolution layer, and trying a layer between the
convolutions. I leave it to you to try this and see if that helps improve the accuracy.

Summary
In this chapter, we learned different techniques to represent text data in deep learning. We
learned how to use pretrained word embeddings and our own trained embeddings when
working on a different domain. We built a text classifier using LSTMs and one-dimensional
convolutions.

In the next chapter, we will learn how to train deep learning algorithms to generate stylish
images, and new images, and to generate text.

77
Generative Networks

All the examples that we have seen in the previous chapters were focused on solving
problems such as classification or regression. This chapter is very interesting and important
for understanding how deep learning is being evolved to solve problems in unsupervised
learning.

In this chapter, we will train networks that learn how to create:

Images based on content and a particular artistic style, popularly called style
transfer
Generating faces of new persons using a particular type of generative adversarial
network (GAN)
Generating new text using language modeling

These techniques form the basis of most of the advanced research that is happening in the
deep learning space. Going into the exact specifics of each of the subfields, such as GANs
and language modeling is out of the scope of this book, as they deserve a separate book for
themselves. We will learn how they work in general and the process of building them in
PyTorch.

Generative Networks Chapter 7

[155]

Neural style transfer
We humans generate artwork with different levels of accuracy and complexity. Though the
process of creating art could be a very complex process, it can be seen as a combination of
the two most important factors, namely, what to draw and how to draw. What to draw is
inspired by what we see around us, and how we draw will also take influences from certain
things that are found around us. This could be an oversimplification from an artist's
perspective, but for understanding how we can create artwork using deep learning
algorithms, it is very useful. We will train a deep learning algorithm to take content from
one image and then draw it according to a specific artistic style. If you are an artist or in the
creative industry, you can directly use the amazing research that has gone on in recent years
to improve this and create something cool within the domain you work in. Even if you are
not, it still introduces you to the field of generative models, where networks generate new
content.

Let's understand what is done in neural style transfer at a high-level, and then dive into
details, along with the PyTorch code required to build it. The style transfer algorithm is
provided with a content image (C) and a style image (S); the algorithm has to generate a new
image (O) which has the content from the content image and the style from the style image.
This process of creating neural style transfer was introduced by Leon Gates and others in
2015 (. The following is the content image (C)
that we will be using:

Generative Networks Chapter 7

[156]

And the following is the style image (S):

And this is the image that we are going to generate:

Generative Networks Chapter 7

[157]

The idea behind style transfer becomes intuitive from understanding how Convolutional
Neural Networks (CNNs) work. When CNNs are trained for object recognition, the early
layers of a trained CNN learn very generic information like lines, curves, and shapes. The
last layers in a CNN capture the higher-level concepts from an image such as eyes,
buildings, and trees. So the values of the last layers of similar images tend to be closer. We
take the same concept and apply it for content loss. The last layer for the content image and
the generated image should be similar, and we calculate the similarity using mean square
error (MSE). We use our optimization algorithms to bring down the loss value.

The style of the image is generally captured across multiple layers in a CNN by a technique
called gram matrix. Gram matrix calculates the correlation between the feature maps
captured across multiple layers. Gram matrix gives a measure of calculating the style.
Similarly styled images have similar values for gram matrix. The style loss is also calculated
using MSE between the gram matrix of the style image and the generated image.

We will use a pretrained VGG19 model, provided in the torchvision models. The steps
required for training a style transfer model are similar to any other deep learning model,
except for the fact that calculating losses is more involved than for a classification or a
regression model. The training of the neural style algorithm can be broken down to the
following steps:

Loading data.1.
Creating a VGG19 model.2.
Defining content loss.3.
Defining style loss.4.
Extracting losses across layers from VGG model.5.
Creating an optimizer.6.
Training generating an image similar to the content image, and style similar to7.
the style image.

Loading the data
Loading data is similar to what we have seen for solving image classification problems in

, Deep Learning for Computer Vision. We will be using the pretrained VGG model,
so we have to normalize the images using the same values on which the pretrained model is
trained.

Generative Networks Chapter 7

[158]

The following code shows how we can do this. The code is mostly self-explanatory as we
have already discussed it in detail in the previous chapters:

Generative Networks Chapter 7

[159]

In this code, we defined three functionalities, does all the preprocessing required and
uses the same values for normalization as those with which the VGG model was trained.
The output of the model needs to be normalized back to its original values; the
function does the processing required. The generated model may be out of the range of
accepted values, and the function limits all the values greater than 1 to 1 and values
that are less than 0 to 0. Finally, the function loads the image, applies the
preprocessing transformation, and converts it into a variable. The following function loads
the style and content image:

We can either create an image with noise (random numbers) or we can use the same content
image. We will use the content image in this case. The following code creates the content
image:

We will use an optimizer to tune the values of the in order for the image to be
closer to the content image and style image. For that reason, we are asking PyTorch to
maintain the gradients by mentioning .

Creating the VGG model
We will load a pretrained model from . We will be using this model
only for extracting features, and the PyTorch VGG model is defined in such a way that all
the convolutional blocks will be in the module and the fully connected, or linear,
layers are in the module. Since we will not be training any of the weights or
parameters in the VGG model, we will also freeze the model. The following code
demonstrates the same:

Generative Networks Chapter 7

[160]

In this code, we created a VGG model, used only its convolution blocks and froze all the
parameters of the model, as we will be using it only for extracting features.

Content loss
The content loss is the MSE calculated on the output of a particular layer, extracted by
passing two images through the network. We extract the outputs of the intermediate layers
from the VGG by using the functionality, by passing in the
content image and the image to be optimized. We calculate the MSE obtained from the
outputs of these layers, as described in the following code:

We will implement the of this code in the coming sections. For now, all we
know is, that the function returns the outputs of particular layers by passing an
image. We pass the outputs generated by passing the content image and noise image to the
MSE function.

Style loss
The style loss is calculated across multiple layers. Style loss is the MSE of the gram matrix
generated for each feature map. The gram matrix represents the correlation value of its
features. Let's understand how gram matrix works by using the following diagram and a
code implementation.

Generative Networks Chapter 7

[161]

The following table shows the output of a feature map of dimension [2, 3, 3, 3], having the
column attributes , , and :

To calculate the gram matrix, we flatten all the values per channel and then find correlation
by multiplying with its transpose, as shown in the following table:

All we did is flatten all the values, with respect to each channel, to a single vector or tensor.
The following code implements this:

Generative Networks Chapter 7

[162]

We implement the as another PyTorch module with a function so
that we can use it like a PyTorch layer. We are extracting the different dimensions from the
input image in this line:

Here, represents batch, represents filters or channels, represents height, and
represents width. In the next step, we will use the following code to keep the batch and
channel dimensions intact and flatten all the values along the height and width dimension,
as shown in the preceding figure:

The gram matrix is calculated by multiplying the flattening values along with its transposed
vector. We can do it by using the PyTorch batch matrix multiplication function, provided as

, as shown in the following code:

We finish normalizing the values of the gram matrix by dividing it by the number of
elements. This prevents a particular feature map with a lot of values dominating the score.
Once is calculated, it becomes simple to calculate style loss, which is
implemented in this code:

The is implemented as another PyTorch layer. It calculates the MSE between
the input values and the style image values.

Generative Networks Chapter 7

[163]

Extracting the losses
Just like we extracted the activation of a convolution layer using the

 function in , Deep Learning for Computer Vision, we
can extract losses of different convolutional layers required to calculate style loss and
content loss. The one difference in this case is that instead of extracting from one layer, we
need to extract outputs of multiple layers. The following class integrates the required
change:

The method takes the model on which we need to call the
 method and the layer numbers for which we need to extract the

outputs. The loop in the method iterates through the layer numbers and
registers the forward hook required to pull the outputs.

The passed to the method is called by PyTorch after
that layer on which the function is registered. Inside the function, we capture the
output and store it in the array.

We need to call the function once when we don't want to capture the outputs.
Forgetting to invoke the methods can cause out-of-memory exceptions as all the
outputs get accumulated.

Let's write another utility function which can extract the outputs required for style and
content images. The following function does the same:

Generative Networks Chapter 7

[164]

Inside the function, we create objects for the class by
passing in the model and the layer numbers. The features list may contain outputs from
previous runs, so we are reinitiating to an empty list. Then we pass in the image through
the model, and we are not going to use the outputs. We are more interested in the outputs
generated in the array. We call the method to remove all the registered
hooks from the model and return the features. The following code shows how we extract
the targets required for style and content image:

Once we extract the targets, we need to detach the outputs from the graphs that created
them. Remember that all these outputs are PyTorch variables which maintain information
of how they are created. But, for our case, we are interested in only the output values and
not the graph, as we are not going to update either image or the image. The
following code illustrates this technique:

Once we have detached, let's add all the targets into one list. The following code illustrates
this technique:

When calculating the style loss and content loss, we passed on two lists called content
layers and style layers. Different layer choices will have an impact on the quality of the
image generated. Let's pick the same layers as the authors of the paper have mentioned. The
following code shows the choice of layers that we are using here:

The optimizer expects a single scalar quantity to minimize. To achieve a single scalar value,
we sum up all the losses that have arrived at different layers. It is common practice to do a
weighted sum of these losses, and again we pick the same weights as used in the paper's
implementation in the GitHub repository (

). Our implementation is a slightly modified version of the
author's implementation. The following code describes the weights being used, which are
calculated by the number of filters in the selected layers:

Generative Networks Chapter 7

[165]

To visualize this, we can print the VGG layers. Take a minute to observe what layers we are
picking, and you can experiment with different layer combinations. We will use the
following code to the VGG layers:

Generative Networks Chapter 7

[166]

We have to define the functions and the to generate artistic images. We
will initialize both of them in the following section.

Creating loss function for each layers
We have already defined functions as PyTorch layers. So, let's create the loss layers for
different style losses and content losses. The following code defines the function:

The is a list containing a bunch of style loss objects and content loss objects based
on the lengths of the arrays created.

Creating the optimizer
In general, we pass in the parameters of a network like VGG to be trained. But, in this
example, we are using VGG models as feature extractors and, hence, we cannot pass the
VGG parameters. Here, we will only provide the parameters of the variable that
we will optimize to make the image have the required content and style. The following code
creates the that optimizes its values:

Now we have all the components for training.

Generative Networks Chapter 7

[167]

Training
The method is different compared to the other models that we have trained till
now. Here, we need to calculate loss at multiple layers, and every time the optimizer is
called, it will change the input image so that its content and style gets close to the target's
content and style. Let's look at the code used for training, and then we will walk through
the important steps in the training:

We are running the training loop for iterations. For every iteration, we calculate the
output from different layers of the VGG model using our function. In this
case, the only thing that changes is the values of , which will contain our style
image. Once the outputs are calculated, we are calculating the losses by iterating through
the outputs and passing them to the corresponding functions along with their
respective targets. We sum up all the losses and call the function. At the end of
the function, loss is returned. The method is called along with the

 method for . If you are running on a GPU, it could take a few
minutes to run; if you are running on a CPU, try reducing the size of the image to make it
run faster.

After running for 500 epochs, the resulting image on my machine looks as shown here. Try
different combinations of content and style to generate interesting images:

Generative Networks Chapter 7

[168]

In the next section, let's go ahead and generate human faces using deep convolutional
generative adversarial networks (DCGANs).

Generative adversarial networks
GANs have become very popular in the last few years. Every week there are some
advancements being made in the area of GANs. It has become one of the important
subfields of deep learning, with a very active research community. GAN was introduced by
Ian Goodfellow in 2014. The GAN addresses the problem of unsupervised learning by
training two deep neural networks, called generator and discriminator, which compete with
each other. In the course of training, both eventually become better at the tasks that they
perform.

GANs are intuitively understood using the case of counterfeiter (generator) and the police
(discriminator). Initially, the counterfeiter shows the police fake money. The police
identifies it as fake and explains to the counterfeiter why it is fake. The counterfeiter makes
new fake money based on the feedback it received. The police finds it fake and informs the
counterfeiter why it is fake. It repeats this a huge number of times until the counterfeiter is
able to make fake money which the police is unable to recognize. In the GAN scenario, we
end up with a generator that generates fake images which are quite similar to the real ones,
and a classifier becomes great at identifying a fake from the real thing.

Generative Networks Chapter 7

[169]

GAN is a combination of a forger network and an expert network, each being trained to
beat the other. The generator network takes a random vector as input and generates a
synthetic image. The discriminator network takes an input image and predicts whether the
image is real or fake. We pass the discriminator network either a real image or a fake
image.

The generator network is trained to produce images and fool the discriminator network into
believing they are real. The discriminator network is also constantly improving at not
getting fooled, as we pass the feedback whilst training it. Though the idea of GANs sounds
simple in theory, training a GAN model that actually works is very difficult. Training a
GAN is also challenging, as there are two deep neural networks that need to be trained.

The DCGAN is one of the early models that demonstrated how to build a
GAN model that learns by itself and generates meaningful images. You
can learn more about it here:

The following diagram shows the architecture of a GAN model:

Generative Networks Chapter 7

[170]

We will walk through each of the components of this architecture, and some of the
reasoning behind them, and then we will implement the same flow in PyTorch in the next
section. By the end of this implementation, we will have basic knowledge of how DCGANs
work.

Deep convolutional GAN
In this section, we will implement different parts of training a GAN architecture, based on
the DCGAN paper I mentioned in the preceding information box. Some of the important
parts of training a DCGAN include:

A generator network, which maps a latent vector (list of numbers) of some fixed
dimension to images of some shape. In our implementation, the shape is (3, 64,
64).
A discriminator network, which takes as input an image generated by the
generator or from the actual dataset, and maps to that a score estimating if the
input image is real or fake.
Defining loss functions for generator and discriminator.
Defining an optimizer.
Training a GAN.

Let's explore each of these sections in detail. The implementation is based on the code,
which is available in the PyTorch examples at:

Defining the generator network
The generator network takes a random vector of fixed dimension as input, and applies a set
of transposed convolutions, batch normalization, and ReLu activation to it, and generates
an image of the required size. Before looking into the generator implementation, let's look at
defining transposed convolution and batch normalization.

Generative Networks Chapter 7

[171]

Transposed convolutions
Transposed convolutions are also called fractionally strided convolutions. They work in
the opposite way to how convolution works. Intuitively, they try to calculate how the input
vector can be mapped to higher dimensions. Let's look at the following figure to understand
it better:

This diagram is referenced from Theano (another popular deep learning framework)
documentation (

). If you want to explore more about how strided convolutions work, I strongly
recommend you read this article from the Theano documentation. What is important for us
is, that it helps to convert a vector to a tensor of required dimensions, and we can train the
values of the kernels by backpropagation.

Batch normalization
We have already observed a couple of times that all the features that are being passed to
either machine learning or deep learning algorithms are normalized; that is, the values of
the features are centered to zero by subtracting the mean from the data, and giving the data
a unit standard deviation by dividing the data by its standard deviation. We would
generally do this by using the PyTorch method. The following
code shows an example:

In all the examples we have seen, the data is normalized just before it enters a neural
network; there is no guarantee that the intermediate layers get a normalized input. The
following figure shows how the intermediate layers in the neural network fail to get
normalized data:

Generative Networks Chapter 7

[172]

Batch normalization acts like an intermediate function, or a layer which normalizes the
intermediate data when the mean and variance are changing over time during training.
Batch normalization was introduced in 2015 by Ioffe and Szegedy (

). Batch normalization behaves differently during training and validation or
testing. During training, the mean and variance is calculated for the data in the batch. For
validation and testing, the global values are used. All we need to understand to use it is that
it normalizes the intermediate data. Some of the key advantages of using batch
normalization are that it:

Improves gradient flow through the network, thus helping us build deeper
networks
Allows higher learning rates
Reduces the strong dependency of initialization
Acts as a form of regularization and reduces the dependency of dropout

Generative Networks Chapter 7

[173]

Most of the modern architectures, such as ResNet and Inception, extensively use batch
normalization in their architectures. Batch normalization layers are introduced after a
convolution layer or linear/fully connected layers, as shown in the following image:

By now, we have an intuitive understanding of the key components of a generator
network.

Generator
Let's quickly look at the following generator network code, and then discuss the key
features of the generator network:

Generative Networks Chapter 7

[174]

In most of the code examples we have seen, we use a bunch of different layers and then
define the flow in the method. In the generator network, we define the layers and
the flow of the data inside the method using a sequential model.

The model takes as input a tensor of size , and then passes it on to a transposed
convolution to map the input to the image size that it needs to generate. The
function passes on the input to the sequential module and returns the output.

The last layer of the generator network is a layer, which limits the range of values the
network can generate.

Generative Networks Chapter 7

[175]

Instead of using the same random weights, we initialize the model with weights as defined
in the paper. The following is the weight initialization code:

We call the function by passing the function to the generator object, . Each
layer is passed on to the function; if the layer is a convolution layer we initialize the weights
differently, and if it is a , then we initialize it a bit differently. We call the
function on the network object using the following code:

Defining the discriminator network
Let's quickly look at the following discriminator network code, and then discuss the key
features of the discriminator network:

Generative Networks Chapter 7

[176]

There are two important things in the previous network, namely, the usage of leaky ReLU
as an activation function, and the usage of sigmoid as the last activation layer. First, let's
understand what Leaky ReLU is.

Leaky ReLU is an attempt to fix the dying ReLU problem. Instead of the function returning
zero when the input is negative, leaky ReLU will output a very small number like 0.001. In
the paper, it is shown that using leaky ReLU improves the efficiency of the discriminator.

Another important difference is not using fully connected layers at the end of the
discriminator. It is common to see the last fully connected layers being replaced by global
average pooling. But using global average pooling reduces the rate of the convergence
speed (number of iterations to build an accurate classifier). The last convolution layer is
flattened and passed to a sigmoid layer.

Other than these two differences, the rest of the network is similar to the other image
classifier networks we have seen in the book.

Defining loss and optimizer
We will define a binary cross-entropy loss and two optimizers, one for the generator and
another one for the discriminator, in the following code:

Up to this point, it is very similar to what we have seen in all our previous examples. Let's
explore how we can train the generator and discriminator.

Generative Networks Chapter 7

[177]

Training the discriminator
The loss of the discriminator network depends on how it performs on real images and how
it performs on fake images generated by the generator network. The loss can be defined as:

loss = maximize log(D(x)) + log(1-D(G(z)))

So, we need to train the discriminator with real images and the fake images generated by
the generator network.

Training the discriminator with real images
Let's pass some real images as ground truth to train discriminator.

First, we will take a look at the code for doing the same and then explore the important
features:

In the previous code, we are calculating the loss and the gradients required for the
discriminator image. The and represent the input image from the
dataset and labels, which is one for real images. It is pretty straightforward, as it is similar
to what we do for other image classifier networks.

Training the discriminator with fake images
Now pass some random images to train discriminator.

Let's look at the code for it and then explore the important features:

Generative Networks Chapter 7

[178]

The first line in this code passes a vector with a size of 100, and the generator network
() generates an image. We pass on the image to the discriminator for it to identify
whether the image is real or fake. We do not want the generator to get trained, as the
discriminator is getting trained. So, we remove the fake image from its graph by calling the

 method on its variable. Once all the gradients are calculated, we call the
to train the discriminator.

Training the generator network
Let's look at the code for it and then explore the important features:

It looks similar to what we did while we trained the discriminator on fake images, except
for some key differences. We are passing the same fake images created by the generator, but
this time we are not detaching it from the graph that produced it, because we want the
generator to be trained. We calculate the loss () and calculate the gradients. Then we
call the generator optimizer, as we want only the generator to be trained, and we repeat this
entire process for several iterations before we have the generator producing slightly realistic
images.

Training the complete network
We looked at individual pieces of how a GAN is trained. Let's summarize them as follows
and look at the complete code that will be used to train the GAN network we created:

Train the discriminator network with real images
Train the discriminator network with fake images
Optimize the discriminator
Train the generator based on the discriminator feedback
Optimize the generator network alone

Generative Networks Chapter 7

[179]

We will use the following code to train the network:

Generative Networks Chapter 7

[180]

The will take a tensor and save it as an image. If provided with a
mini-batch of images, then it saves them as a grid of images.

In the following sections, we will take a look at what the generated images and the real
images look like.

Inspecting the generated images
So, let's compare the generated images and the real images.

The generated images will be as follows:

Generative Networks Chapter 7

[181]

The real images will be as follows:

Comparing both sets of images, we can see that our GAN was able to learn how to generate
images. Apart from training to generate new images, we also have a discriminator, which
can be used for classification problems. The discriminator learns important features about
the images which can be used for classification tasks when there is a limited amount of
labeled data available. When there is limited labeled data, we can train a GAN that will give
us a classifier, which can be used to extract features and a classifier module can be built on
top of it.

In the next section, we will train a deep learning algorithm to generate text.

Language modeling
We will learn how to teach a recurrent neural network (RNN) how it can create a sequence
of text. In simple words, the RNN model that we will build now will be able to predict the
next word, given some context. This is just like the Swift app on your phone, which guesses
the next word that you are typing. The ability to generate sequential data has applications
in many different areas, such as:

Generative Networks Chapter 7

[182]

Image captioning
Speech recognition
Language translation
Automatic email reply

We learnt in , Deep Learning with Sequence Data and Text, that RNNs are tough to
train. So, we will be using a variant of RNN called Long Short-Term Memory (LSTM). The
development of the LSTM algorithm started in 1997 but became popular in the last few
years. It became popular due to the availability of powerful hardware and quality data, and
some advancements such as dropout also helped in training better LSTM models much
more easily than previously.

It is quite popular to use LSTM models to generate either a character-level language model
or a word-level language model. In character-level language modeling, we give one
character and the LSTM model is trained to predict the next character, whereas in word-
level language modeling, we give a word and the LSTM model predicts the next word. In
this section, we will be building a word-level language model using the PyTorch LSTM
model. Just like training any other module, we will be following the standard steps:

Preparing the data
Generating batches of data
Defining a model based on LSTM
Training the model
Testing the model

This section is inspired from a slightly simplified version of the word language modeling
example available in PyTorch at

.

Preparing the data
For this example, we use a dataset called . The
dataset is a collection of over 100 million tokens extracted from the set of
verified Good and Featured articles on Wikipedia. Compared to the preprocessed version of
Penn Treebank (PTB), another popularly-used dataset, is over two times
larger. The dataset also features a far larger vocabulary and retains the original
case, punctuation, and numbers. The dataset contains full articles and, as a result, it is well
suited for models that take advantage of long term dependency.

Generative Networks Chapter 7

[183]

The dataset was introduced in a paper called Pointer Sentinel Mixture Models (
). The paper talks about solutions that can be used for solving a

specific problem, where the LSTM with a softmax layer has difficulty in predicting rare
words, though the context is unclear. Let's not worry about this for now, as it is an
advanced concept and out of the scope of this book.

The following screenshot shows what the data looks like inside the WikiText dump:

As usual, makes it easier to use the dataset, by providing abstractions over
downloading and reading the dataset. Let's look at the code that does that:

The previous code takes care of downloading the data and splits it into ,
, and datasets. The key difference in language modeling is how the data is

processed. All the text data that we had in is stored in one long tensor. Let's
look at the following code and the results, to understand how the data is processed better:

As we can see from the previous results, we have only one example field and it contains all
the text. Let's also quickly look at how the text is represented:

Generative Networks Chapter 7

[184]

Now, take a quick look at the image that showed the initial text and how it is being
tokenized. Now we have a long sequence, of length , representing . The
next important thing is how we batch the data.

Generating the batches
Let's take a look at the code and understand the two key things involved in the batching of
sequential data:

There are two important things that are going through this method. One is ,
and another is , called backpropagation through time. It gives a brief idea about
how data is transformed through each phase.

Batches
Processing the entire data as a sequence is quite challenging and not computationally
efficient. So, we break the sequence data into multiple batches, and treat each as a separate
sequence. Though it may not sound straightforward, it works a lot better, as the model can
learn quicker from batches of data. Let's take the example where the English alphabet is
sequenced and we split it into batches.

Sequence: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z.

When we convert the preceding alphabet sequence into four batches, we get:

a g m s y

b h n t z

c i o u

Generative Networks Chapter 7

[185]

d j p v

e k q w

f l r x

In most of the cases, we would end up trimming the last extra words or tokens that form a
small batch, since it doesn't have a great effect on text modeling.

For the example , when we split the data into 20 batches, we would get each
batch with elements 104431.

Backpropagation through time
The other important variable that we see go through the iterator is backpropagation
through time (BPTT). What it actually means is, the sequence length the model needs to
remember. The higher the number, the better but the complexity of the model and the
GPU memory required for the model also increase.

To understand it better, let's look at how we can split the previous batched alphabet data
into sequences of length two:

a g m s

b h n t

The previous example will be passed to the model as input, and the output will be from the
sequence but containing the next values:

b h n t

c I o u

For the example , when we split the batched data, we get data of size 30, 20 for
each batch where 30 is the sequence length.

Defining a model based on LSTM
We defined a model that is a bit similar to the networks that we saw in , Deep
Learning with Sequence Data and Text, but it has some key differences. The high-level
architecture of the network looks like the following image:

Generative Networks Chapter 7

[186]

 As usual, let's take a look at the code and then walk through the key parts of it:

Generative Networks Chapter 7

[187]

In the method, we create all the layers such as embedding, dropout, RNN, and
decoder. In earlier language models, embeddings were not generally used in the last layer.
The use of embeddings, and tying the initial embedding along with the embeddings of the
final output layer, improves the accuracy of the language model. This concept was
introduced in the papers Using the Output Embedding to Improve Language Models (

) by Press and Wolf in 2016, and Tying Word Vectors and Word
Classifiers: A Loss Framework for Language Modeling () by
Inan and his co-authors in 2016. Once we have made the weights of encoder and decoder
tied, we call the method to initialize the weights of the layer.

The function stitches all the layers together. The last linear layers map all the
output activations from the LSTM layer to the embeddings that are of the size of the
vocabulary. The flow of the function input is passed through the embedding layer
and then passed on to an RNN (in this case, an LSTM), and then to the decoder, another
linear layer.

Defining the train and evaluate functions
The training of the model is very similar to what we saw in all the previous examples in this
book. There are a few important changes that we need to make so that the trained model
works better. Let's look at the code and its key parts:

Generative Networks Chapter 7

[188]

Since we are using dropout in our model, we need to use it differently during training and
for validation/test datasets. Calling on the model will ensure dropout is active
during training, and calling on the model will ensure that dropout is used
differently:

For an LSTM model, along with the input, we also need to pass the hidden variables. The
 function will take the batch size as input and then return a hidden variable,

which can be used along with the inputs. We can iterate through the training data and pass
the input data to the model. Since we are processing sequence data, starting with a new
hidden state (randomly initialized) for every iteration will not make sense. So, we will use
the hidden state from the previous iteration after removing it from the graph by calling the

 method. If we do not call the method, then we end up calculating gradients
for a very long sequence until we run out of GPU memory.

Generative Networks Chapter 7

[189]

We then pass on the input to the LSTM model and calculate loss using .
Using the previous values of the hidden state is implemented in the
following function:

RNNs and their variants, such as LSTM and the Gated Recurrent Unit (GRU), suffer from a
problem called exploding gradients. One simple trick to avoid the problem is to clip the
gradients, which is done in the following code:

We manually adjust the values of the parameters by using the following code.
Implementing an optimizer manually gives more flexibility than using a prebuilt optimizer:

We are iterating through all the parameters and adding up the value of the gradients,
multiplied by the learning rate. Once we update all the parameters, we log all the statistics
such as time, loss, and perplexity.

We write a similar function for validation, where we call the method on the model.
The function is defined using the following code:

Generative Networks Chapter 7

[190]

Most of the training logic and evaluation logic is similar, except for calling and not
updating the parameters of the model.

Training the model
We train the model for multiple epochs and validate it using the following code:

The previous code is training the model for epochs, and we start with a high-learning
rate of 20 and reduce it further when the validation loss saturates. Running the model for 40
epochs gives a score of approximately . The following code block contains the
logs when the model was last run:

Generative Networks Chapter 7

[191]

In the last few months, researchers started exploring the previous approach to create a
language model for creating pretrained embeddings. If you are more interested in this
approach, I would strongly recommend you read the paper Fine-tuned Language Models for
Text Classification) by Jeremy Howard and Sebastian
Ruder, where they go into a lot of detail on how language modeling techniques can be used
to prepare domain-specific word embeddings, which can later be used for different NLP
tasks, such as text classification problems.

Generative Networks Chapter 7

[192]

Summary
In this chapter, we covered how to train deep learning algorithms that can generate artistic
style transfers using generative networks, new images using GAN and DCGAN, and
generate text using LSTM networks.

In the next chapter, we will cover some of the modern architectures, such as ResNet and
Inception, for building better computer vision models and models such as sequence-to-
sequence, which can be used for building language translation and image captioning.

88
Modern Network Architectures

In the last chapter, we explored how deep learning algorithms can be used to create artistic
images, create new images based on existing datasets, and generate text. In this chapter, we
will introduce you to different network architectures that power modern computer vision
applications and natural language systems. Some of the architectures that we will look at in
this chapter are:

ResNet
Inception
DenseNet
Encoder-decoder architecture

Modern network architectures
One of the important things that we do when the deep learning model fails to learn is to
add more layers to the model. As you add layers the model accuracy improves and then
starts saturating. It starts degrading as you keep on adding more layers. Adding more
layers beyond a certain number will add certain challenges, such as vanishing or exploding
gradients, which is partially solved by carefully initializing weights and introducing
intermediate normalizing layers. Modern architectures, such as residual network (ResNet)
and Inception, try to solve this problem by introducing different techniques, such as
residual connections.

Modern Network Architectures Chapter 8

[194]

ResNet
ResNet solves these problems by explicitly letting the layers in the network fit a residual
mapping by adding a shortcut connection. The following image shows how ResNet works:

In all the networks we have seen, we try to find a function that maps the input (x) to its
output (H(x)) by stacking different layers. But the authors of ResNet proposed a fix; instead
of trying to learn an underlying mapping from x to H(x), we learn the difference between
the two, or the residual. Then, to calculate H(x), we can just add the residual to the input.
Say the residual is F(x) = H(x) - x; instead of trying to learn H(x) directly, we try to learn F(x)
+ x.

Each ResNet block consists of a series of layers, and a shortcut connection adding the input
of the block to the output of the block. The add operation is performed element-wise and
the inputs and outputs need to be of the same size. If they are of a different size, then we
can use paddings. The following code demonstrates what a simple ResNet block would
look like:

Modern Network Architectures Chapter 8

[195]

The contains an method which initializes all the different layers,
such as the convolution layer, batch normalization, and ReLU layers. The method
is almost similar to what we have seen up until now, except that the input is being added
back to the layer's output just before it is returned.

The PyTorch package provides an out-of-the-box ResNet model with
different layers. Some of the different models available are:

ResNet-18
ResNet-34
ResNet-50
ResNet-101
ResNet-152

We can also use any of these models for transfer learning. The instance
enables us to simply create one of these models and use them. We have done this a couple
of times in the book, and the following code is a refresher for that:

Modern Network Architectures Chapter 8

[196]

The following figure shows what a 34-layer ResNet model would look like:

Modern Network Architectures Chapter 8

[197]

We can see how this network consists of multiple ResNet blocks. There have been
experiments where teams have tried models as deep as 1,000 layers. For most real-world
use cases, my personal recommendation would be to start with a smaller network. Another
key advantage of these modern networks is that they need very few parameters compared
to models such as VGG, as they avoid using fully connected layers that need lots of
parameters to train. Another popular architecture that is being used to solve problems in
the computer vision field is Inception. Before moving on to Inception architecture, let's train
a ResNet model on the dataset. We will use the data that we used in

, Deep Learning for Computer Vision, and will quickly train a model based on
features calculated from ResNet. As usual, we will follow these steps to train the model:

Creating PyTorch datasets
Creating loaders for training and validation
Creating the ResNet model
Extract convolutional features
Creating a custom PyTorch dataset class for the pre-convoluted features and
loader
Creating a simple linear model
Training and validating the model

Once done, we are going to repeat this step for Inception and DenseNet. At the end, we will
also explore the ensembling technique, where we combine these powerful models to build a
new model.

Creating PyTorch datasets
We create a transformation object containing all the basic transformations required and use
the to load the images from the data directory that we created in ,
Deep Learning for Computer Vision. In the following code, we create the datasets:

Modern Network Architectures Chapter 8

[198]

By now, most of the preceding code will be self-explanatory.

Creating loaders for training and validation
We use PyTorch loaders to load the data provided by the dataset in the form of batches,
along with all the advantages, such as shuffling the data and using multi-threads, to speed
up the process. The following code demonstrates this:

We need to maintain the exact sequence of the data while calculating the pre-convoluted
features. When we allow the data to be shuffled, we will not be able to maintain the labels.
So, ensure the is , otherwise the required logic needs to be handled inside
the code.

Creating a ResNet model
Using the layers of the pretrained model, we create a PyTorch sequential model
by discarding the last linear layer. We will use this trained model for extracting features
from our images. The following code demonstrates this:

In the preceding code, we created a model available in models. In
the following line, we pick all the ResNet layers, excluding the last layer, and create a new
model using :

Modern Network Architectures Chapter 8

[199]

The instance allows us to quickly create a model using a bunch of PyTorch
layers. Once the model is created, do not forget to set the parameter to

, as this will allow PyTorch not to maintain any space for holding gradients.

Extracting convolutional features
We pass the data from the train and validation data loaders through the model and store
the results of the model in a list for further computation. By calculating the pre-convoluted
features, we can save a lot of time in training the model, as we will not be calculating these
features in every iteration. In the following code, we calculate the pre-convulted features:

Once we calculate the pre-convoluted features, we need to create a custom dataset that can
pick data from our pre-convoluted features. Let's create a custom dataset and loader for the
pre-convoluted features.

Modern Network Architectures Chapter 8

[200]

Creating a custom PyTorch dataset class for the pre-
convoluted features and loader
We have already seen how to create a PyTorch dataset. It should be a subclass of
the dataset class and should implement the

 and methods, which return the length of the data in the dataset. In
the following code, we implement a custom dataset for the pre-convoluted features:

Once the custom dataset class is created, creating a data loader for the pre-convoluted
features is straightforward, as shown in the following code:

Now we need to create a simple linear model that can map the pre-convoluted features to
the corresponding categories.

Creating a simple linear model
We will create a simple linear model that will map the pre-convoluted features to the
respective categories. In this case, the number of categories is two:

Modern Network Architectures Chapter 8

[201]

Now, we are good to train our new model and validate the dataset.

Training and validating the model
We will use the same function that we have been using from , Deep Learning
for Computer Vision. I am not including that here, to save space. The following code snippet
contains functionality to train the model and shows the results:

The result of the preceding code is as follows:

Modern Network Architectures Chapter 8

[202]

As we can see from the results, the model achieves a 98% training accuracy and 97%
validation accuracy. Let's understand another modern architecture and how to use it for
calculating pre-convoluted features and use them to train a model.

Inception
In most of the deep learning algorithms we have seen for computer vision models, we either
pick up a convolution layer with a filter size of 1 x 1, 3 x 3, 5 x 5, 7 x 7, or a map pooling
layer. The Inception module combines convolutions of different filter sizes and concatenates
all the outputs together. The following image makes the Inception model clearer:

In this Inception block image, the convolution of different sizes is applied to the input, and
the outputs of all these layers are concatenated. This is the simplest version of an Inception
module. There is another variant of an Inception block where we pass the input through a 1
x 1 convolution before passing it through 3 x 3 and 5 x 5 convolutions. A 1 x 1 convolution is
used for dimensionality reduction. It helps in solving computational bottlenecks. A 1 x 1
convolution looks at one value at a time and across the channels. For example, using a 10 x
1 x 1 filter on an input size of 100 x 64 x 64 would result in 10 x 64 x 64. The following figure
shows the Inception block with dimensionality reductions:

Modern Network Architectures Chapter 8

[203]

Now, let's look at a PyTorch example of what the preceding Inception block would look
like:

Modern Network Architectures Chapter 8

[204]

The preceding code contains two classes, and .
 acts like a custom layer which applies a two-dimensional convolution layer,

batch normalization, and a ReLU layer to the input that is passed through. It is good
practice to create a new layer when we have a repeating code structure, to make the code
look elegant.

The implements what we have in the second Inception figure. Let's
go through each smaller snippet and try to understand how it is implemented:

The preceding code transforms the input by applying a 1 x 1 convolution block:

In the preceding code, we transform the input by applying a 1 x 1 convolution block
followed by a 5 x 5 convolution block:

Modern Network Architectures Chapter 8

[205]

In the preceding code, we transform the input by applying a 1 x 1 convolution block
followed by a 3 x 3 convolution block:

In the preceding code, we apply an average pool along with a 1 x 1 convolution block, and
at the end, we concatenate all the results together. An Inception network would consist of
several Inception blocks. The following image shows what an Inception architecture would
look like:

The package has an Inception network which can be used in the same way
we used the ResNet network. There were many improvements made to the initial Inception
block, and the current implementation available from PyTorch is Inception v3. Let's look at
how we can use the Inception v3 model from to calculate pre-computed
features. We will not go through the data loading process as we will be using the same data
loaders from the previous ResNet section. We will look at the following important topics:

Creating an Inception model
Extracting convolutional features using
Creating a new dataset for the convoluted features
Creating a fully connected model
Training and validating the model

Modern Network Architectures Chapter 8

[206]

Creating an Inception model
The Inception v3 model has two branches, each of which generates an output, and in the
original model training, we would merge the losses as we did for style transfer. As of now
we are interested in using only one branch to calculate pre-convoluted features using
Inception. Getting into the details of this is outside the scope of the book. If you are
interested in knowing more about how it works, then going through the paper and the
source code (

) of the Inception model would help. We can disable one of the branches by
setting the parameter to . The following code explains how to create a
model and set the parameter to :

Extracting the convolution features from the Inception model is not straightforward, as with
ResNet, so we will use the to extract the activations.

Extracting convolutional features using
register_forward_hook
We will be using the same techniques that we used to calculate activations for style transfer.
The following is the class with some minor modifications, as we are
interested in extracting only outputs of a particular layer:

Modern Network Architectures Chapter 8

[207]

Apart from the function, the rest of the code is similar to what we have used for style
transfer. As we are capturing the outputs of all the images and storing them, we will not be
able to hold the data on graphics processing unit (GPU) memory. So we extract the tensors
from GPU to CPU and just store the tensors instead of . We are converting it back
to tensors as the data loaders will work only with tensors. In the following code, we use the
objects of to extract the output of the Inception model at the last layer,
excluding the average pooling layer, dropout and the linear layer. We are skipping the
average pooling layer to avoid losing useful information in the data:

Let's create the datasets and loaders required for the new convoluted features.

Creating a new dataset for the convoluted features
We can use the same class to create the new dataset and data loaders. In
the following code, we create the datasets and the loaders:

Modern Network Architectures Chapter 8

[208]

Let's create a new model to train on the pre-convoluted features.

Creating a fully connected model
A simple model may end in overfitting, so let's include dropout in the model. Dropout will
help avoid overfitting. In the following code, we are creating our model:

Once the model is created, we can train the model.

Training and validating the model
We use the same fit and training logic as seen in the previous ResNet and other examples.
We will just look at the training code and the results from it:

Modern Network Architectures Chapter 8

[209]

Looking at the results, the Inception model achieves 99% accuracy on the training and
97.8% accuracy on the validation dataset. As we are pre-computing and holding all the
features in the memory, it takes less than a few minutes to train the models. If you are
running out of memory when you run the program on your machine, then you may need to
avoid holding the features in the memory.

We will look at another interesting architecture, DenseNet, which has become very popular
in the last year.

Densely connected convolutional networks
DenseNet
Some of the successful and popular architectures, such as ResNet and Inception, have
shown the importance of deeper and wider networks. ResNet uses shortcut connections to
build deeper networks. DenseNet takes it to a new level by introducing connections from
each layer to all other subsequent layers, that is a layer where one could receive all the
feature maps from the previous layers. Symbolically, it would look like the following:

Modern Network Architectures Chapter 8

[210]

The following figure describes what a five-layer dense block would look like:

There is a DenseNet implementation of torchvision (
). Let's look at two major

functionalities, and .

DenseBlock
Let's look at the code for and then walk through it:

Modern Network Architectures Chapter 8

[211]

 is a sequential module where we add layers in a sequential order. Based on
the number of layers () in the block, we add that number of
objects along with a name to it. All the magic is happening inside the . Let's
look at what goes on inside the .

DenseLayer
One good way to learn how a particular network works is to look at the source code.
PyTorch has a very clean implementation and most of the time is easily readable. Let's look
at the implementation:

If you are new to inheritance in Python, then the preceding code may not look intuitive. The
 is a subclass of ; let's look at what goes on inside each

method.

Modern Network Architectures Chapter 8

[212]

In the method, we add all the layers that the input data needs to be passed to. It
is quite similar to all the other network architectures we have seen.

The magic happens in the method. We pass the input to the method of
the class, which is . Let's look at what happens in the
method of the sequential class (

):

The input is passed through all the layers that were previously added to the sequential
block and the output is concatenated to the input. The process is repeated for the required
number of layers in a block.

With the understanding of how a block works, let's explore how we can use
DenseNet for calculating pre-convoluted features and building a classifier model on top of
it. At a high level, the DenseNet implementation is similar to the VGG implementation. The
DenseNet implementation also has a features module, which contains all the dense blocks,
and a classifier module, which contains the fully connected model. We will be going
through the following steps to build the model. We will be skipping most of the part that is
similar to what we have seen for Inception and ResNet, such as creating the data loader and
datasets. Also, we will discuss the following steps in detail:

Creating a DenseNet model
Extracting DenseNet features
Creating a dataset and loaders
Creating a fully connected model and train

By now, most of the code will be self-explanatory.

Creating a DenseNet model
Torchvision has a pretrained DenseNet model with different layer options (121, 169, 201,
161). We have chosen the model with layers. As discussed, the DenseNet has two
modules: features (containing the dense blocks), and classifier (fully connected block). As
we are using DenseNet as an image feature extractor, we will only use the feature module:

Modern Network Architectures Chapter 8

[213]

Let's extract the DenseNet features from the images.

Extracting DenseNet features
It is quite similar to what we did for Inception, except we are not using

 to extract features. The following code shows how the DenseNet
features are extracted:

The preceding code is similar to what we have seen for Inception and ResNet.

Creating a dataset and loaders
We will use the same class that we created for ResNet and use it to
create data loaders for the and dataset in the following code:

Modern Network Architectures Chapter 8

[214]

Time to create the model and train it.

Creating a fully connected model and train
We will use a simple linear model, similar to what we used in ResNet and Inception. The
following code shows the network architecture which we will be using to train the model:

We will use the same method to train the preceding model. The following code snippet
shows the training code, along with the results:

The result of the preceding code is:

Modern Network Architectures Chapter 8

[215]

The preceding algorithm was able to achieve a maximum training accuracy of 99%, and 99%
validation accuracy. Your results could change as the dataset you create may
have different images.

Some of the advantages of DenseNet are:

It substantially reduces the number of parameters required
It alleviates the vanishing gradient problem
It encourages feature reuse

In this next section, we will explore how we can build a model that combines the advantage
of the convoluted features computed, using the different models of ResNet, Inception, and
DenseNet.

Model ensembling
There could be times when we would need to try to combine multiple models to build a
very powerful model. There are many techniques that can be used for building an ensemble
model. In this section, we will learn how to combine outputs using the features generated
by three different models (ResNet, Inception, and DenseNet) to build a powerful model. We
will be using the same dataset that we used for other examples in this chapter.

Modern Network Architectures Chapter 8

[216]

The architecture for the ensemble model would look like this:

This image shows what we are going to do in the ensemble model, which can be
summarized in the following steps:

Create three models1.
Extract the image features using the created models2.
Create a custom dataset which returns features of all the three models along with3.
the labels
Create model similar to the architecture in the preceding figure4.
Train and validate the model5.

Let's explore each of the steps in detail.

Modern Network Architectures Chapter 8

[217]

Creating models
Let's create all the three required models, as shown in the following code:

Now we have all the models, let's extract the features from the images.

Extracting the image features
Here, we combine all the logic that we have seen individually for the algorithms in the
chapter:

Modern Network Architectures Chapter 8

[218]

By now, we have created image features using all the models. If you are facing memory
issues, then you can either remove one of the models, or stop storing the features in the
memory, which could be slow to train. If you are running this on a CUDA instance, then
you can go for a more powerful instance.

Modern Network Architectures Chapter 8

[219]

Creating a custom dataset along with data
loaders
We will not be able to use the class as it is, since it was developed to
pick from the output of only one model. So, the following implementation contains minor
changes to the class to accommodate all the three different generated
features:

We have made changes to the method to store all the features generated from
different models, and the method to retrieve the features and label of an
image. Using the class, we created dataset instances for both training and
validation data. Once the dataset is created, we can use the same data loader for batching
data, as shown in the following code:

Modern Network Architectures Chapter 8

[220]

Creating an ensembling model
We need to create a model that is similar to the architecture diagram show previously. The
following code implements this:

In the preceding code, we create three linear layers that take features generated from
different models. We sum up all the outputs from these three linear layers and pass them on
to another linear layer, which maps them to the required categories. To prevent the model
from overfitting, we have used dropouts.

Training and validating the model
We need to make some minor changes to the method to accommodate the three input-
values generated from the data loader. The following code implements the new
function:

Modern Network Architectures Chapter 8

[221]

As you can see from the previous code, most of it remains the same, except that the loader
returns three inputs and one label. So, we make changes in the function, which is self-
explanatory.

The following code shows the training code:

The result of the preceding code is as follows:

Modern Network Architectures Chapter 8

[222]

The ensemble model achieves a 99.6% training accuracy and a validation accuracy of 99.3%.
Though ensemble models are powerful, they are computationally expensive. They are good
techniques to use when you are solving problems in competitions such as Kaggle.

Encoder-decoder architecture
Almost all the deep learning algorithms we have seen in the book are good at learning how
to map training data to their corresponding labels. We cannot use them directly for tasks
where the model needs to learn from a sequence and generate another sequence or an
image. Some of the example applications are:

Language translation
Image captioning
Image generation (seq2img)
Speech recognition
Question answering

Most of these problems can be seen as some form of sequence-to-sequence mapping, and
these can be solved using a family of architectures called encoder decoder architectures. In
this section, we will learn about the intuition behind these architectures. We will not be
looking at the implementation of these networks, as they need to be studied in more detail.

Modern Network Architectures Chapter 8

[223]

At a high level, an encoder decoder architecture would look like the following:

An encoder is usually a recurrent neural network (RNN) (for sequential data) or a
Convolution Neural Network (CNN) (for images) that takes in an image or a sequence and
converts it into a fixed length vector which encodes all the information. The decoder is
another RNN or CNN, which learns to decode the vector generated by the encoder and
generates a new sequence of data. The following image shows how the encoder decoder
architecture looks for an image captioning system:

Modern Network Architectures Chapter 8

[224]

Let's look in more detail at what happens inside an encoder and a decoder architecture for
an image captioning system.

Encoder
For an image captioning system, we will preferably use a trained architecture, such as
ResNet or Inception, for extracting features from the image. Like we did for the ensemble
model, we can output a fixed vector length by using a linear layer, and then make that
linear layer trainable.

Decoder
Decoder is a Long Short-Term Memory (LSTM) layer which will generate a caption for an
image. To build a simple model, we can just pass the encoder embedding as input to the
LSTM only once. But it could be quite challenging for the decoder to learn; instead, it is
common practice to provide the encoder embedding at every step of the decoder.
Intuitively, a decoder learns to generate a sequence of text that best describes the caption of
a given image.

Summary
In this chapter, we explored some modern architectures, such as ResNet, Inception, and
DenseNet. We also explored how we can use these models for transfer learning and
ensembling, and introduced the encoder decoder architecture, which powers a lot of
systems, such as language translation systems.

In the next chapter, we will arrive at a conclusion of what we have achieved in our learning
journey through the book, as well as discuss where can you go from here. We will visit a
plethora of resources on PyTorch and some cool deep learning projects that have been
created or are undergoing research using PyTorch.

99
What Next?

You made it! Thanks for reading Deep Learning with PyTorch. You should have a firm
understanding of the core mechanisms and the application program interface (API)
required for building deep learning applications using PyTorch. By now, you should be
comfortable in using all the fundamental blocks that power most of the modern-day deep
learning algorithms.

What next?
In this chapter, we will summarize what we learned in this book and further explore
different projects and resources. These projects and resources will help you further in the
journey of keeping yourself up-to-date with the latest research.

Overview
This section provides a bird's-eye view of what we learned across the book:

History of artificial intelligence (AI), machine learning how various
improvements in hardware and algorithms triggered huge successes in the
implementation of deep learning across different applications.
How to use various building blocks of PyTorch, such as variables, tensors, and

, to develop neural networks.

What Next? Chapter 9

[226]

Understanding the different processes involved in training a neural network,
such as the PyTorch dataset for data preparation, data loaders for batching
tensors, the package for creating network architectures, and using
PyTorch loss functions and optimizers.
We saw different types of machine learning problems along with challenges, such
as overfitting and underfitting. We also went through different techniques, such
as data augmentation, adding dropouts, and using batch normalization to
prevent overfitting.
We learned the different building blocks of Convolution Neural Networks
(CNNs), and also learned about transfer learning, which helps us to use a
pretrained model. We also saw techniques, such as using pre-convoluted
features, which helps in reducing the time taken to train the models.
We learned about word embeddings and how to use them for text classification
problems. We also explored how we can use pretrained word embedding. We
explored recurrent neural network (RNN), its variants such as Long Short-
Term Memory (LSTM), and how to use them for text classification problems.
We explored generative models and learned how PyTorch can be used for
creating artistic style transfer, and for creating new CIFAR images using
a generative adversarial network (GAN). We also explored language modeling
techniques which can be used to generate new text or to create domain-specific
embedding.
We explored modern architectures, such as ResNet, Inception, DenseNet and
encode-decoder architecture. We also saw how these models can be used for
transfer learning. We also built an ensemble model by combining all these
models.

Interesting ideas to explore
Most of the concepts that we learned in the book form the foundation of modern
applications that are powered by deep learning. In this section, we will look at the different
interesting projects that we can do that are related to computer vision and natural language
processing (NLP).

What Next? Chapter 9

[227]

Object detection
All the examples we have seen in this book help you in detecting whether a given image is
this (cat) or that (dog). But, to solve some of the problems in the real world, you may need
to identify different objects in an image, such as shown here:

This image shows the output of an object detection algorithm where the algorithm is
detecting objects such as a beautiful dog and cat . Just as there are off-the-shelf algorithms
for image classification, there are a bunch of amazing algorithms that can help in building
object recognition systems. Here is a list of some of the important algorithms and the papers
that mention them:

Single Shot Multibox Detector (SSD)
Faster RCNN
YOLO2

What Next? Chapter 9

[228]

Image segmentation
Let's assume you are reading this book from the terrace of a building. What do you see
around you? Can you draw an outline of what you see? If you are a good artist, unlike me,
then you would have probably drawn a couple of buildings, trees, birds, and a few more
interesting things surrounding you. Image segmentation algorithms try to capture
something similar. Given an image, they generate a prediction for each pixel, identifying
which class each pixel belongs to. The following image shows what image segmentation
algorithms identify:

What Next? Chapter 9

[229]

Some of the important algorithms that you may want to explore for image segmentation
are:

R-CNN
Fast R-CNN
Faster R-CNN
Mask R-CNN

OpenNMT in PyTorch
The Open-Source Neural Machine Translation (OpenNMT) (

) project helps in building a lot of applications that are powered by the
encoder-decoder architecture. Some of the applications that you can build are translation
systems, text summarization, and image-to-text.

Alien NLP
Alien NLP is an open source project built on PyTorch which enables us to do many NLP
tasks much more easily. There is a demo page (

) that you should look at to understand what you can build using Alien NLP.

fast.ai making neural nets uncool again
One of my favorite places to learn about deep learning, and a great place of inspiration, is a
MOOC with the sole motive of making deep learning accessible to all, organized by two
amazing mentors from fast.ai (), Jeremy Howard and Rachel Thomas.
For a new version of their course, they built an incredible framework (

) on top of PyTorch, making it much easier and quicker to build
applications. If you have not already started their course, I would strongly recommend you
start it. Exploring how the fast.ai framework is built will give you great insight into many
powerful techniques.

What Next? Chapter 9

[230]

Open Neural Network Exchange
Open Neural Network Exchange (ONNX) () is the first step towards an
open ecosystem that empowers you to choose the right tools as the project evolves. ONNX
provides an open source format for deep learning models. It defines an extensible
computation graph model, as well as definitions of built-in operators and standard data
types. Caffe2, PyTorch, Microsoft Cognitive Toolkit, Apache MXNet, and other tools are
developing ONNX support. This project can help in product-ionizing PyTorch models.

How to keep yourself updated
Social media platforms, particularly Twitter, help you to stay updated in the field. There are
many people you can follow. If you are unsure of where to start, I would recommend
following Jeremy Howard (), and any interesting
people he may follow. By doing this, you would be forcing the Twitter recommendation
system to work for you.

Another important Twitter account you need to follow is PyTorch's (
). The amazing people behind PyTorch have some great content being shared.

If you are looking for research papers, then look at arxiv-sanity (
), where many smart researchers publish their papers.

More great resources for learning about PyTorch are its tutorials (
), its source code (), and its

documentation ().

Summary
There is much more to deep learning and PyTorch. PyTorch is a relatively new framework,
which, at the time of writing this chapter, is a year old. There is much more to learn and
explore, so happy learning. All the best.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

TensorFlow 1.x Deep Learning Cookbook
Antonio Gulli, Amita Kapoor

ISBN: 978-1-78829-359-4

Install TensorFlow and use it for CPU and GPU operations.
Implement DNNs and apply them to solve different AI-driven problems.
Leverage different data sets such as MNIST, CIFAR-10, and Youtube8m with
TensorFlow and learn how to access and use them in your code.
Use TensorBoard to understand neural network architectures, optimize the
learning process, and peek inside the neural network black box.
Use different regression techniques for prediction and classification problems
Build single and multilayer perceptrons in TensorFlow
Implement CNN and RNN in TensorFlow, and use it to solve real-world use
cases.
Learn how restricted Boltzmann Machines can be used to recommend movies.
Understand the implementation of Autoencoders and deep belief networks, and
use them for emotion detection.
Master the different reinforcement learning methods to implement game playing
agents.
GANs and their implementation using TensorFlow.

Other Books You May Enjoy

[232]

Deep Learning with Keras
Antonio Gulli, Sujit Pal

ISBN: 978-1-78712-842-2

Optimize step-by-step functions on a large neural network using the
Backpropagation Algorithm
Fine-tune a neural network to improve the quality of results
Use deep learning for image and audio processing
Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word
embedding in special cases
Identify problems for which Recurrent Neural Network (RNN) solutions are
suitable
Explore the process required to implement Autoencoders
Evolve a deep neural network using reinforcement learning

Other Books You May Enjoy

[233]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
activation
Alien NLP
Amazon Web Services (AWS)
Anaconda installation
 URL
application program interface (API)
artificial intelligence (AI)
 about , ,
 history
arxiv-sanity
 reference link
average pooling

B
backpropagation through time (BPTT)
baseline model
 about ,
 choice of last layer
 choice of loss function
 optimization
batch normalization , ,
batches of vectors
 generating
batches
 about
 backpropagation through time (BPTT)
 generating
binary classification problem
binary cross-entropy loss
 defining

C
CNN layer
 weights, visualizing

CNN model
 about
 building, from scratch , ,
 classifying, from scratch , ,
 classifying, transfer learning used ,
 Conv2d , ,
 nonlinear activation
 outputs, visualizing from intermediate layers ,

, ,
 pooling ,
 training , , ,
 view ,
complete network
 training ,
content loss
Conv2d ,
Convolution Neural Network (CNN) , , ,

, ,
Convolution Neural Networks (CNNs)
convolutional network
 on sequence data
 one-dimensional convolution, for sequence data

D
data abstractions, PyTorch
 tensors
 variables ,
data preprocessing
 about
 feature engineering ,
 missing values, handling
 value normalization ,
 vectorization
data splitting, considerations
 data redundancy

[235]

 data representativeness
 time sensitive
data, loading with PyTorch
 about
 DataLoader class
 Dataset class
data
 creating, for neural network
 loading , ,
 preparing , ,
dataset splitting, considerations
 about
dataset splitting, strategies
 about
 K-fold validation
 K-fold validation, with shuffling
 simple holdout validation
dataset
 creating
 test split
 training
 validation
decoder
Deep convolutional GAN
 about
 binary cross-entropy loss, defining
 complete network, training ,
 discriminator network, defining
 discriminator, training
 generated images, inspecting
 generator network, defining
 generator network, training
 optimizer, defining
deep convolutional generative adversarial networks

(DCGANs)
deep learning (DL)
 about , , ,
 algorithms
 applications ,
 data
 features
 frameworks ,
 hardware availablity
 history
 PyTorch

 used, for image classification , ,
deep learning for grouping photos
dense
DenseBlock
DenseLayer
DenseNet features
 extracting
DenseNet model
 creating
DenseNet
 about
 advantages
discriminator network
 defining
discriminator
 training
 training, with fake images ,
 training, with real images

E
encoder
Encoder-decoder architecture
ensemble model
 about
 creating
 custom dataset, creating with data loaders
 image features, extracting
 models, creating
 training
 validating
evaluation protocol
 Holdout validation set
 Iterated k-fold validation
 K-fold cross validation
exploding gradients

F
fast.ai
feature engineering , ,
filters
first neural network, implementing
 about
 data preparation
 learnable parameters, creating

[236]

 loss function
 neural network model
 neural network, optimizing
forget gate
fractionally strided convolutions
fully connected layers
fully connected model
 creating
 training
functions
 evaluating

G
Gated Recurrent Unit (GRU) ,
generated images
 inspecting
generative adversarial network (GAN) , ,

generative adversarial networks ,
generator network
 batch normalization , ,
 defining ,
 key features ,
 training
gram matrix
graphics processing unit (GPU) ,
graphics processing units (GPUs)

H
high-level activities, first neural network
 creating learnable parameters
 data preparation
 loss
 network model
 optimizer
hyper parameters

I
image classification
 data, loading into PyTorch tensors ,
 deep learning, using , ,
 model, training ,
 network architecture, building
 PyTorch tensors, loading as batches

image segmentation
image segmentation, algorithms
 reference link
IMDB data
 downloading
Inception
inception model
 about ,
 convolutional features, extracting with

register_forward_hook
 creating
 dataset, creating for convoluted features
 fully connected model, creating
 training
 validating

L
language modelling
 about ,
 batches, generating
 data, preparing ,
 functions, evaluating ,
 model training, defining ,
 model, defining on LSTM ,
 model, training
layers
 about
linear layer
loaders
 creating
Long Short-Term Memory (LSTM)
 about , , , , ,
 model, defining ,
 reference link
Long-term dependency
losses
 extracting ,
LSTM networks
 about
 batches, creating
 data, preparing
 model, training
 network, creating

[237]

M
Machine Comprehension
 reference link
machine learning models
 evaluating ,
machine learning project, workflow
 about
 baseline model ,
 dataset creation ,
 evaluation protocol
 large model, to overfit
 learning rate picking strategies
 measure of success
 model regularization, applying
 prepare your data
 problem definition ,
machine learning
 about
 batch
 binary classification
 classes
 data point
 epoch
 examples
 input
 issues ,
 label
 loss value
 multi-class classification
 multi-label classification
 output
 prediction
 prediction error
 reinforcement learning
 sample
 scalar regression
 supervised learning
 target
 unsupervised learning, techniques
 vector regression
mean square error (MSE) ,
missing values
 handling
model regularization

 parameters
model training
 defining
model
 training ,
modern network architectures
 about
 inception model ,
 ResNet model ,

N
natural language processing (NLP) , , , ,

network model
 creating, with word embedding
neural network model
 about
 network implementation
neural network
 about
 MNIST ,
 used, for creating data
neural networks
 building blocks , ,
 layers
 non-linear activations
 PyTorch non-linear activations
neural style transfer
 about , ,
 content loss
 data, loading , ,
 loss function, creating for each layers
 losses, extracting ,
 optimizer, creating
 style loss ,
 training ,
 VGG model, creating ,
non-linear activations
 about
 Leaky ReLU function
 ReLU function
 sigmoid
 sigmoid function
 tanh function
nonlinear activation

[238]

O
object detection
one-dimensional convolution
 for sequence data
 model, training
 network, creating
one-hot encoding
Open Neural Network Exchange (ONNX)
 about
 references
Open-Source Neural Machine Translation

(OpenNMT)
 about
 in PyTorch
optimizer
 defining
Output vector
outputs
 visualizing, from intermediate layers , ,

overfitting
 about ,
 avoiding, techniques , , , , ,

P
padding
Penn Treebank (PTB)
pooling ,
pre-convoluted features
 calculating , ,
pretrained word embedding
 about
 embedding layer weights, freezing
 embeddings, downloading
 embeddings, loading in model
 using
Python Imaging Library (PIL)
PyTorch non-linear activations
 deep learning algorithms, building
 loss functions ,
 model architecture, for machine learning issues

 network architecture, optimizing
PyTorch

 about
 ExponentialLR
 installing
 MultiStepLr
 Open-Source Neural Machine Translation

(OpenNMT)
 ReduceLROnPlateau
 reference link
 StepLR

Q
question and answering (QA) systems

R
recurrent neural network (RNN)
 about , , , , ,
 document classifiers
 sequence-to-sequence learning
 time-series forecasting
recursive neural networks
 about
 RNN, working example
residual network (ResNet)
ResNet model
 about
 convolutional features, extracting
 creating
 custom PyTorch dataset class, creating for

loader
 custom PyTorch dataset class, creating for pre-

convoluted features
 loaders, creating for training
 loaders, validating for training
 PyTorch datasets, creating
 simple linear model, creating
 training
 validating
 working ,

S
Single Shot Multibox Detector (SSD)
State Vector
stride
style loss ,

style transfer
sum of squared error (SSE)
supervised learning
 about
 examples
symbolic AI

T
tensors
 3-D tensors
 4-D tensors
 5-D tensors
 matrix (2-D tensors)
 scalar (0-D tensors)
 slicing tensors
 tensors on GPU
 vectors (1-D tensors)
text data
 tokenization
 vectorization
 working ,
text tokenization
 performing
 torchtext.data
 torchtext.datasets
token
tokenization
 about ,
 n-gram representation
 text, converting into characters ,
 text, converting into words ,
torchtext.data
torchtext.datasets
transposed convolutions

U
underfitting , ,

unsupervised learning
 techniques

V
value normalization ,
vectorization
 about , ,
 one-hot encoding ,
 word embedding ,
VGG model
 creating ,
VGG16
VGG16 model
 creating
 exploring
 fine-tuning
 layers, freezing
 training ,
view
 about ,
 linear layer
virtual machine (VM)
vocabulary
 building

W
weights
 visualizing, of CNN layer
Wondermovies
word embedding
 about , ,
 batches of vectors, generating
 IMDB data, downloading
 model, training
 network model, creating
 text tokenization, performing
 training, by building sentiment classifier
 vocabulary, building

	Cover
	Copyright and Credits
	Dedication
	Packt Upsell
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with Deep Learning Using PyTorch
	Artificial intelligence
	The history of AI

	Machine learning
	Examples of machine learning in real life

	Deep learning
	Applications of deep learning
	Hype associated with deep learning
	The history of deep learning
	Why now?
	Hardware availability
	Data and algorithms
	Deep learning frameworks
	PyTorch

	Summary

	Chapter 2: Building Blocks of Neural Networks
	Installing PyTorch
	Our first neural network
	Data preparation
	Scalar (0-D tensors)
	Vectors (1-D tensors)
	Matrix (2-D tensors)
	3-D tensors
	Slicing tensors
	4-D tensors
	5-D tensors
	Tensors on GPU
	Variables

	Creating data for our neural network
	Creating learnable parameters
	Neural network model
	Network implementation
	Loss function
	Optimize the neural network

	Loading data
	Dataset class
	DataLoader class

	Summary

	Chapter 3: Diving Deep into Neural Networks
	Deep dive into the building blocks of neural networks
	Layers – fundamental blocks of neural networks
	Non-linear activations
	Sigmoid
	Tanh
	ReLU
	Leaky ReLU

	PyTorch non-linear activations
	The PyTorch way of building deep learning algorithms
	Model architecture for different machine learning problems
	Loss functions
	Optimizing network architecture

	Image classification using deep learning
	Loading data into PyTorch tensors
	Loading PyTorch tensors as batches
	Building the network architecture
	Training the model

	Summary

	Chapter 4: Fundamentals of Machine Learning
	Three kinds of machine learning problems
	Supervised learning
	Unsupervised learning
	Reinforcement learning

	Machine learning glossary
	Evaluating machine learning models
	Training, validation, and test split
	Simple holdout validation
	K-fold validation
	K-fold validation with shuffling
	Data representativeness
	Time sensitivity
	Data redundancy

	Data preprocessing and feature engineering
	Vectorization
	Value normalization
	Handling missing values
	Feature engineering

	Overfitting and underfitting
	Getting more data
	Reducing the size of the network
	Applying weight regularization
	Dropout
	Underfitting

	Workflow of a machine learning project
	Problem definition and dataset creation
	Measure of success
	Evaluation protocol
	Prepare your data
	Baseline model
	Large model enough to overfit
	Applying regularization
	Learning rate picking strategies

	Summary

	Chapter 5: Deep Learning for Computer Vision
	Introduction to neural networks
	MNIST – getting data

	Building a CNN model from scratch
	Conv2d
	Pooling
	Nonlinear activation – ReLU
	View
	Linear layer

	Training the model
	Classifying dogs and cats – CNN from scratch
	Classifying dogs and cats using transfer learning

	Creating and exploring a VGG16 model
	Freezing the layers
	Fine-tuning VGG16
	Training the VGG16 model

	Calculating pre-convoluted features
	Understanding what a CNN model learns
	Visualizing outputs from intermediate layers

	Visualizing weights of the CNN layer
	Summary

	Chapter 6: Deep Learning with Sequence Data and Text
	Working with text data
	Tokenization
	Converting text into characters
	Converting text into words
	N-gram representation

	Vectorization
	One-hot encoding
	Word embedding

	Training word embedding by building a sentiment classifier
	Downloading IMDB data and performing text tokenization
	torchtext.data
	torchtext.datasets

	Building vocabulary
	Generate batches of vectors
	Creating a network model with embedding
	Training the model

	Using pretrained word embeddings
	Downloading the embeddings
	Loading the embeddings in the model
	Freeze the embedding layer weights

	Recursive neural networks
	Understanding how RNN works with an example

	LSTM
	Long-term dependency
	LSTM networks
	Preparing the data
	Creating batches
	Creating the network
	Training the model

	Convolutional network on sequence data
	Understanding one-dimensional convolution for sequence data
	Creating the network
	Training the model

	Summary

	Chapter 7: Generative Networks
	Neural style transfer
	Loading the data
	Creating the VGG model
	Content loss
	Style loss
	Extracting the losses
	Creating loss function for each layers
	Creating the optimizer
	Training

	Generative adversarial networks
	Deep convolutional GAN
	Defining the generator network
	Transposed convolutions
	Batch normalization
	Generator

	Defining the discriminator network
	Defining loss and optimizer
	Training the discriminator
	Training the discriminator with real images
	Training the discriminator with fake images

	Training the generator network
	Training the complete network
	Inspecting the generated images

	Language modeling
	Preparing the data
	Generating the batches
	Batches
	Backpropagation through time

	Defining a model based on LSTM
	Defining the train and evaluate functions
	Training the model

	Summary

	Chapter 8: Modern Network Architectures
	Modern network architectures
	ResNet
	Creating PyTorch datasets
	Creating loaders for training and validation
	Creating a ResNet model
	Extracting convolutional features
	Creating a custom PyTorch dataset class for the pre-convoluted features and loader
	Creating a simple linear model
	Training and validating the model

	Inception
	Creating an Inception model
	Extracting convolutional features using register_forward_hook
	Creating a new dataset for the convoluted features
	Creating a fully connected model
	Training and validating the model

	Densely connected convolutional networks – DenseNet
	DenseBlock
	DenseLayer
	Creating a DenseNet model
	Extracting DenseNet features
	Creating a dataset and loaders
	Creating a fully connected model and train

	Model ensembling
	Creating models
	Extracting the image features
	Creating a custom dataset along with data loaders
	Creating an ensembling model
	Training and validating the model

	Encoder-decoder architecture
	Encoder
	Decoder

	Summary

	Chapter 9: What Next?
	What next?
	Overview
	Interesting ideas to explore
	Object detection
	Image segmentation
	OpenNMT in PyTorch
	Alien NLP
	fast.ai – making neural nets uncool again
	Open Neural Network Exchange

	How to keep yourself updated
	Summary

	Other Books You May Enjoy
	Index

